Why Do We Need a Meta-Level
for the CRM?

Guenther Goerz
Univ. of Erlangen-Nuremberg, C.S.D. /8
goerz@informatik.uni-erlangen.de

Overview

* The Starting Point

* Abstraction, Concepts, and Tractable Inferences
* Generics and Defaults: The Semantic Dimension
* The Potential of Default Reasoning
 Implementation: Answer Set Programming

« (Still) Open Questions

G. Goerz, FAU ER-N, Inf. 8

The Starting Point

Categorical Documentation
“Categorical documentation”

[E.g. “Stuffed Fringilla coelebs 1965-0034”

- objects not unique, with normal production value,
- used as example out of specific context

® Such as most objects in Natural History, ethnological collections,
many archeological objects like frequent types of pottery etc.

® Documentation focus is “representative of its category”:
taxonomic role, deviations from prototype,

type of context of provenance, of use;
factual context only a statistical element for
induction.

® Classification and categorical behaviour is the information, the
object and its context is only an attribute.

ICS-FORTH September 2, 2003

Categorical Documentation
The CIDOC CRM (ISO/CD21127) Top-Level

(ESS Types)

refer to / refine

E39 Actors @ R e -
E18 Physical Stuff

participate in affect or / refer to

location
E2 Temporal Entities
E52 @%gpans within at

ICS-FORTH September 2, 2003

refer to / identifie

w
=
S
=
=
>
-3
o
<
—
-
=

Categorical Documentation
Biological Example (from ChiNan University)

P127 has broade P12 has broader term

has type

P127 has ~broader term

has type

P2 has type

usually has location

P53 has /former or
current/ location
P138 has

P138 has Tepresentation

P138 has / representation

representation

ICS-FORTH September 2, 2003

Categorical Documentation

Instantiation levels

Look at three kinds of knowledge elements:

® factual: “My cat — ate — my mullet” = item- relation — item
® cross-categorical: “My cat —ate - fish” = item- relation — class
® categorical: “cats-eat-fish” = class-relationship-class

] Interpretation of factual statement is unique:

“the predicate: ate(my cat, my mullet) holds".

] Interpretation of categorical and cross-categorical statements
IS not unique.

ICS-FORTH September 2, 2003

Abstraction, Concepts, and
Tractable Inferences

Frege: Abstraction as a constructive procedure:

- Build equivalence classes of objects with (positively
expressed) equal properties

- Introduce the notion of hypothetical abstract objects
— which have only the common properties -
to express that certain statements are invariant w.r.t.
such an equivalence relation

— Abstraction schema A(x) &= Vy(x ~y — A(y))
leads to a new expression for invariant statements A
with abstractor a: A(ax) with “abstract object” ax

- E.g.: Functional abstractor A, set abstractor €

G. Goerz, FAU ER-N, Inf. 8

Logical Framework: Description Logics

« Decidable, efficiently implementable sub-
languages of FOL (subset of L3)

» Suitable for KR: Representation at predicate level

- Intensional level (T-Box): Definition of concepts

» Concepts: inheritance hierarchy (subsumption lattice)
* Roles: (binary) relations (hierarchy)
* Axioms

- Extensional level (A-Box): Assertions over individuals
(instances; CRM: “items*)

- Open world assumption
— Complete and sound inference procedures exist

G. Goerz, FAU ER-N, Inf. 8

Description Logic Systems

description
language

D constructors for
building complex
concepts and roles
out of atomic
concepts and roles

) formal, logic-based
semantics

© F. Baader

vl

TBox

defines terminology of

the application domain

N\

ABox
states I‘acls 2lh()lll d

specific "world"

reasoning
component

e

D derive implicitly
represented knowledge
(e.g., subsumption)

> practical” algorithms

knowledge base

G. Goerz, FAU ER-N, Inf. 8

Description Logics

Concept expressions:

- Necessary and sufficient conditions
Role-defining expressions

- No need for predefined shortcuts
Inferences:
subsumption, satisfiability, consistency, instantiation
Analytical reasoning with concepts is straightforward,
e.g. (in informal notation)

Person subsumes

(Person with every Male Friend [who] is-a Doctor) subsumes

(Person with every Friend [who] is-a

(Doctor with a Specialty [which] is Surgery))

G. Goerz, FAU ER-N, Inf. 8

Categorical Documentation
Problem Statement

@® Current data structures are made to organize description of facts
(particulars) by providing a system of classes (nodes, tables) and
relationships (attributes, links).

® No difference is made between data that are particulars and those that
are universals. Inheritance of properties due to instantiation or
subsumption of universals appearing as data cannot be described.

® Data in manufacturing (spare parts), ethnography, natural history and
others have this problem.

® Few work in knowledge representation about metamodels and their
relations to simple models.

® Missing: A theory/proposal of data structures relating particulars and
universals - i.e. “cross-categorical data” in a logically well-defined
way.

ICS-FORTH September 2, 2003

Ambiguities of Quantification

HAS-COLOR

What is the exact meaning o |Frog Green |7

* Every frog is just green
* Every frog is also green

Every frog is of some green

There is a frog which is just green

* Frogs are typically green, but there may be
exceptions

G. Goerz, FAU ER-N, Inf. 8

Disambiguating the Graph ...logically

* Every frog is just green
Frog L VHAS — COLOR.Green

* Every frog is also green
Frog C JHAS — COLOR.Green

* There is a frog which is just green
Frog L VHAS — COLOR.Green
Frog(x),HAS — COLOR(x, y)

G. Goerz, FAU ER-N, Inf. 8

General Observations

 The meaning of most object-oriented representations
can be logically very ambiguous.

« The appeal of graphical representations of object-
oriented systems has led to forms of reasoning that are

not covered by standard logical categories, and are not
yet well understood.

« Unfortunately, it is much easier to develop some
algorithm that appears to reason over structures of a
certain kind than to justify its reasoning by explaining
what the structures are expressing about the domain.

G. Goerz, FAU ER-N, Inf. 8

The Protégé OWL(-DL) Meta-Model

Project Edit Window Help

D@ [« [am 3]

(C_ OWAClasses

Relationship Superclass

v v]c] 2]

C) THINGA
@ (© :SYSTEM-CLASSA
¢ (© META-CLASSA
¢ © CLassA
¢ (© 'STANDARD-CLASS
(©) :OWL-NAMED-CLASS™
¢ ©:.ow-ClassA
@ (© OWL-ANONYMOUS-CLASS A
(© :OWL-ENUMERATION-CLASS
¢ © OWL-RESTRICTION
(©) :OWL-ALL-RESTRICTION
(©) :0WL-HAS-VALUE-RESTRICTION
@ (© :0OWL-MAXCARDI-RESTRICTION

¢ © :0WL-MINCARDI-RESTRICTION

_— (©:0ML-SOME-RESTRICTION
@ © gWL-LOOICAL-CLASS
(© :0WL-COMPLEMENT-CLASS
(© :OWL-INTERSECTION-CLASS
_(©:0M-UNION-CLASS
© :oWL-NAMED-CLASSM
¢ ©:sLoTA
(© :STANDARD-SLOT
© -owL-sLoTD
© (© FACETA
-

- ()

CONSTRAINTA
ANNOTATIONA
RELATIONA

) -OWL-ANONYMOUS-ROOTH

999

(© :0WL-CARDIF-RESTRICTION™

(© :0WL-CARDI-RESTRICTION™

[e]x]

| Name Documentation Constraints | \/ | C| +| -
| lowi-cuass |

| roe

| Template Stots Wwivclx| +| -
Name |__Type | Cardinality| Other Facets

2 [S]:0WL-DISJOINT-CLASSES Instance multiple classes={.OWL-CLASS)

§§ E] DIRECT-TYPE ! Instance multiple classes={.CLASS)

| |S| DIRECT-TEMPLATE-SLOTS® ! Instance multiple classes={:0WL-SLOT}

i :S] DIRECT-SUPERCLASSES® I Instance multiple classes={.OWL-CLASS)

18] nane String single

; E] DIRECT-INSTANCES ! Instance multiple classes={THING)

7 [S] DIRECT-SUBCLASSES T Instance multiple classes={.CLASS}

... a Matter of the Meta-Model 17!

Categorical Documentation
Categorical relationships in the CRM

J E55 Type represents a metaclass. All CRM classes can be regarded as
instances of £E55 Type. The property P2 has type means instance-of.

J E55 Type is related by P127 has broader term, meaning /sA.

(J Important cross-categorical relationships are defined, such as: P125 used
object of type, together with the respective factual one: P16 used specific
object.

J E55 Type is also treated as simple class in the sense of a product of the
human mind.

U There are no other categorical relationships

ICS-FORTH September 2, 2003 i

Universal and Prototype Views

« Combination of a prototype-based view with a
conceptual ("universal”) property- and class-
based one?

- In factual documentation objects are always unique,
categorical documentation is about examples

- But: uniqueness condition needs not to be given up

« Cases where uniqueness (= monotonicity) still holds
— allowing for variations in irrelevant properties

 Examples where property values may be overwritten (non-
monotonicity)

G. Goerz, FAU ER-N, Inf. 8

Categorical Documentation

Interpretation of categorical relationships

(J Interpretation of categorical relationships is not unique:

1. eat (Cat,Fish) < 3 x:Cat,y:Fish (¢ ate(x,y)) = some cats can eat some fish

2. eat (Cat,Fish) <= 3 x:Cat,y:Fish (ate(x.y)) = some cats have eaten some fish

3. eat (Cat,Fish) < V x:Cat 3 y:Fish (¢ ate(x,y)) = all cats can eat some fish

4. eat (Cat,Fish) < V x:Cat,V y:Fish (¢ ate(x,y)) = all cats can eat all fish

5. eat (Cat,Fish) == V x:Cat (ate(x,y) = Fish(y)) = all cats can eat only fish

7. card {x: Cat(x) n 3y a Fish(y) a ate(x,y)} / card {x: Cat(x)} > 0.1 = more than 10% of all
cats have eaten some fish.

(] Case 1. is the normal meaning of a relationship in a schema and most generic, but

normally too week. Frequently, we want to register a typical behaviour, more like
case 7.

(J We propose : Cat “usually eats” Fish, or Cat “typically eats” Fish.

ICS-FORTH September 2, 2003

1

Comments

« Separate carefully expressive means
- <> means: “is interpreted as“

- Don‘t use modal operators
« Either “can eat” = “eat” or use new predicate “can-eat”

« Otherwise, introduce equivalent to McCarthy‘s modal
functions like can(.), if definitely required

- Use only present tense (for the sake of simplicity)

* Look for a generic representation of tense later on, e.g.
Reichenbach’s time “points“ e, s, r

« Cross-categorial expressions in strict cases are
logically transparent

G. Goerz, FAU ER-N, Inf. 8

Generics and Defaults: The
Semantic Dimension

« Typicality is a separate issue
- problems we looked at exist without talking about typicality
* Now: assumptions and exceptions

* Generics: properties that hold “in general” - admitting
exceptions — as opposed to universals (properties that
hold over all instances)

- Kind-referring predication (“the frog“ or “frogs“) vs. object
predication

- Expressing a kind of general property

— Habituals: A regularity of action is predicated of an ordinary
individual

G. Goerz, FAU ER-N, Inf. 8

Common Uses of Defaults

1. General statements
- normal: under typical circumstances, Ps are Qs (frogs live on trees)

- prototypical: the prototypical Pis a Q (frogs are green)
- statistical: Most Ps are Qs

2. Lack of information to the contrary

- familiarity: if a P was not a Q you would know it

- group confidence: All the known Ps are known or assumed to be Qs
3. Conventional use

- conversational: a P is a Q unless 1 tell you otherwise

- representational: a P is a Q unless otherwise indicated (speed limit in a city)
4. Persistence

- inertia: a P is a Q unless something changes it (position of objects)

-time: a Pis a Qif it used to be a Q (color, size of objects)

G. Goerz, FAU ER-N, Inf. 8

Generics and Exceptions

« What is the relationship between generic
statements and explicitly quantified statements?

« Generic (“characterizing”) statements are
intensional

« Explicit statements of regularities are
extensional, not generics

L U

- Examples: “mostly“, “typical”, “normal”

— Claim: The cases we are looking at in natural history
and cultural heritage documentation are extensional
« considering primarily individuals, e.g., specimens in
botanics are individuals (cf. Daston)

G. Goerz, FAU ER-N, Inf. 8

Generics and Exceptions (2)

* Approaches to the problem of generics:

- Generic statements are strictly speaking false, but
acceptable (exceptions!)

— Generic statements are neither true nor false
« Treatment as inference rules
« Cannot be embedded within one another (important??)
— Generic statements have a truth value (model-
theoretic view)

 But: How many exceptions can a generic statement tolerate?

« There is no univocal quantifier which works for all generics
(including vague quantifiers)

G. Goerz, FAU ER-N, Inf. 8

Analysis of Generic Statements

« Give some account of truth conditions (?)

« Explain the about genericity (laws) vs. quantified,
extensional statements

« Use of generic statements in reasoning (...exceptions!)
——

GEN operator (Pelletier/Asher)

« Three parts: variables, restrictor, main clause
« Example: “Frogs live in this part of Africa“

GENI[x](x are frogs; yly is this part of Africa & x live in y])

G. Goerz, FAU ER-N, Inf. 8

Semantics of the GEN Operator

» Candidates for interpretation
- Relevant quantification (V over relevant objects)
- Abstract objects (singular predication over abstract object)
- Prototypes (same nature as ordinary objects)
- Stereotypes (extension + stereotypical properties)
- Modal conditionals (possible worlds)
- Situation semantics (expressing constraints)
— Default reasoning approaches

» Formal theory: interpretation as a conditional operator

- Axiomatization & model theoretic semantics... meeting all
requirements — but: implementation???

G. Goerz, FAU ER-N, Inf. 8

Arguments pro Default Reasoning

 Assumption: The extensional view is the
relevant one for CRM applications

« Is there a need to stick to the claim that generic
statements are essentially truth-conditional?

%3
e The significance of generic statements lies in

their “dynamic” meaning,
i.e. update conditions for information states

=> default inference (Veltman)

G. Goerz, FAU ER-N, Inf. 8

The Potential of Default Reasoning

* Default reasoning: If a P(.) is generally a Q(.) and P(a) is
true, then it is reasonable to conclude that Q(a) is true
unless there is a good reason not to.

* Generic statements like “Birds fly“ interpreted
extensionally as “In general [etc.], birds fly“.

* Proposal:
It is sufficient to consider generic objects (typical_bird)
as arguments for strict relations (fly vs. typically_fly [7?])

« To talk about typical behaviour, introduce a generic
concept for it in the first place

G. Goerz, FAU ER-N, Inf. 8

Default Logic'

» Special default rules: KB is a default theory
consisting of two parts:

— a set F of first-order sentences

- a set D of default rules which specify what
assumptions can be made and when

« Mechanism for specifying explicitly
which sentences should be added to KB when it
is consistent to do so

e Problem: Can't reason about defaults

I'one of several accounts of non-monotonic reasoning

G. Goerz, FAU ER-N, Inf. 8

Default Rules (Reiter)

» Default inference rule:
If x is a bird is true and the fact that x flies can
be consistenly assumed, then conclude that
x flies is true

bird(x) : fly(x)
fly(x)

G. Goerz, FAU ER-N, Inf. 8

Consequences for the Meta Level

» For generic propositions, we need only
one operator, like GEN,

 which - the extensional case assumed -

can be implemented in terms of default
inference rules (= meta level?),

« and which in turn can e.g. be generated
by means of macro expansion.

e ... Counterexamples??

G. Goerz, FAU ER-N, Inf. 8

A Viable Solution?

Property

Property Name

Entity — Domain

Entity - Range

CPl

is usually identified by (usually
identifies)

T1 Type of CRM Entity

T41 Type of Appellation

CP5 usually consists of (usually forms |T3 Type of Condition

part of) State T3 Type of Condition State
CP7 usually takes place at (usually

witnesses) T4 Type of Period T53 Type of Place
CP8 usually takes place on or within

(usually witnesses) T4 Type of Period T18 Type of Physical Object
CP8 usually consists of (usually forms

part of) T4 Type of Period T4 Type of Period
CP10 usually falls within (usually

contains) T4 Type of Period T4 Type of Period
CP1 usually has participant (usually

participates in} T5 Type of Event T39 Type of Actor
CP12 usually occurs in the presence of

(is usually present at) T5 Type of Event T77 Type of Persistent ltem
CP13 usually destroys (is usually

destroyed by) T6 Type of Destruction | T18 Type of Physical Stuff
cPi4 is usually carried out by (usually

performs) T7 Type of Activity T39 Type of Actor
CP15 is usually influenced by (usually

influences) T7 Type of Activity T1 Type of CRM Entity
CP16 |usually uses type of objec! (is

usually used for) T7 Type of Activity T70 Type of Stuff
CP17 is usually motivated by (usually

moltivates) T7 Type of Activity T1 Type of CRM Entity
CP19 is usually intended use of (is

G. Goerz, FAU ER-N, Inf. 8

..up to CP141

Implementation Options

* DLP: Description Logic Programming
- Intersection of description logics and logic
programming (rules)
* ASP: Answer Set Programming
as a preprocessing module to a DL system

- A constructive, declarative programming paradigm
related to conventional logic programming, but
including classical negation

- simple and efficient model generation based on
stable model semantics

- Many specialized answer set solvers exist as

smodels?, dlv, cmodels, ...; cf. also XSB
G. Goerz, FAU ER-N, Inf. 8

Integration of Rules and Ontologies

 Allows for building rules on top of ontologies
and, to a limited extent, building ontologies on
top of rules

* In our case: Combination of CRM as a DL
(OWL) ontology with default rules for A-Box
reasoning

— Default rules affect only the A-Box (extensionality
assumed):

1. Propositionalization (,,grounding”) of the rules over
the actual A-Box, making use of T-Box relations

2. Evaluation, i.e. model generation as a new, additional
form of instance generation

G. Goerz, FAU ER-N, Inf. 8

A Default Rule in ASP

. bird(z) - fly() translated to ASP
fly(z)

fly(X) :- bird(X), not -fly(X).
% penguin(X) => not fly(X)
-fly(X) :- penguin(X).

bird(X) :- penguin(X).
bird(tweety).

 Answer set: {fly(tweety), bird(tweety)}
* Replacing the last line by penguin(tweety).

= New answer set;
{penguin(tweety), bird(tweety), -fly(tweety)}

G. Goerz, FAU ER-N, Inf. 8

(Still) Open Questions

« What is the meaning of the following example

- Does it suggest a graph transformation?
...Hard to understand: the second graph

— What can be inferred?

« There are two kinds of edges: “normal“ ones and “usually“
edges

« What is the interpretation of the “usually” relations - as
opposed to the “normal“ ones?

- Consequences for complexity?
- Implementation?

G. Goerz, FAU ER-N, Inf. 8

Categorical Documentation
CRM cross-categorial relationships

(O.n O:n

P2 has type P2 has type
(is type of) P125 used object of type P101 had as general use (is type of)

P16 used specific object
(was used for)

v, A .
Holy Communion { Holy Bread Basket
3 } 4
Holy Communi l
Y !u on Holy Bread Basket
St Paul’s TA507
24-12-2004
18

ICS-FORTH September 2, 2003

Categorical Documentation
New categorical relationships for the CRM

155 Activity Type

” O.n
On

P2’ ha§ type

(is_t:vpe of) P125 used object of typ
(was type of object

0.n 0.n

CP16 usually uses

(1s usually used for)

P16 used specific object

0.n AR

ES55 Stuff Type

0:n

(P2°" has type

101 had as general use (is type of)

0O.n

(was used for)

Holy Communion
St Paul’s
24-12-2004

ICS-FORTH September 2, 2003

Holy Bread Basket
TAS07

19

To be discussed

« Modalities
- epistemological
- Intentions, multi-agent scenarios

- Separate representation layer to deal with epistemological and
pragmatic questions

- Modal logic??
« Cf. modal functions (McCarthy)
 Time and tense
- Dating as a classification problem?
- General requirements for temporal reasoning?
- Statistical reasoning
- Yet beyond scope

G. Goerz, FAU ER-N, Inf. 8

G. Goerz, FAU ER-N, Inf. 8

Formal Ontologies

 Formal Ontology

- Standardized terminological/conceptual hierarchy
« Concepts (,is“ - intransitive, substance)
 Relations (,,has” - transitive, accidents)

— Axioms: constraints; rules, ...

« Reference ontologies

- Generic, universal conceptual inventory
Representation language and fundamental distinctions

- Foundational relations: parts & wholes (mereology),
similarity, dependence, connection, inherence, temporal order

* Application ontologies

- Modelling particular application domains
G. Goerz, FAU ER-N, Inf. 8

ASP: Logic Programs

Answer set logic programs consist of rules

of four types

« Basicrules: a<— b

* Choice rules: {a}< b

« Constraints: 1<—Db

* Aggregate rules: see below

G. Goerz, FAU ER-N, Inf. 8

Intuitive Meaning of the Answer Set

Consider the following simple program of three rules
d <
{b}< a
c<Db

Rule 1: a must be part of the solutions

Rule 2: b may be part of the solution if a is in the
solution

Rule 3: ¢ must be part of the solution if b is in the
solution

There are two answer sets of this program: {a}, {a b c}

G. Goerz, FAU ER-N, Inf. 8

Intuitive Meaning of the Answer Set (2)

* Add the following constraint to the program
~—C
q <—
{b} < a
c<Db
« Now there is only one answer set: {a}
* The constraint “< ¢“ weeds out{a b c}

G. Goerz, FAU ER-N, Inf. 8

The Idea Behind Programs with
Aggregate Rules

» Consider the program
set(a). set(b). set(c).
twoElementsSet <— count({X,set(X)})=2.
threeElementsSet <— count({X, set(X)})=3.

* Its only answer set is:
{set(a) set(b) set(c) threeElementsSet}

G. Goerz, FAU ER-N, Inf. 8

