Component Design for Data Mapping Pipeline

This document is currently in draft form and is intended to complement the theoretical description
contained in “A Reference Model for Data Mapping tools” by Martin Doerr, released as draft in

August 2013.
draft version: 2013-10-20

author: Gerald de Jong
gerald@delving.eu

COLLECTION

REGISTRATION

source
metadata
MAPPING ANALYZER
MEMORY COREF
ENDORSER

MAPPING

source
metadata

adopted

COREF
SUGGESTER

BUILDER

MAPPER

VALIDATOR

QUERY
SERVER



3) Component Design
3.1) Collection Registration
3.1.2) Integration with the Pipeline
3.1.2) Open Source vs Closed Source
3.2) Analyzer
3.2.1) Multiple Repeatable Phases
3.2.2) Value and Occurrence Histograms
3.2.3) Vocabulary Enumeration
3.2.4) Uniqueness Validation
3.3) Mapping Builder
3.3.1) Structure Transformation
3.3.2) URI Generation
3.3.3) Negotiation
3.3.4) Version Control
3.4) Mapping Memory
3.4.1) Variations on a Theme
3.4.2) Experts in Live Contact
3.4.3) Advanced Matching
3.4.4) Mapping Comparison
3.5) Coreference Suggester
3.5.1) Competing Heuristics
3.5.2) The Question of Why
3.6) Coreference Endorser
3.6.1) Coreference Map Building
3.6.2) Coreference Maintenance
3.7) Coreference Store

3.8) Mapper

3.8.1) Reacting to Changes
3.9) Validator
3.9.1) Target Schema Validation
3.9.2) Error Filtering and Rerouting
3.9.3) URI Unigueness Checking
3.10) Recycler
3.10.1) Step by Step
3.10.2) Reintegration
3.11) Query Server
3.12) Pipeline Integration
3.12.1) Harvest via HTTP
3.12.2) XMPP Chat Protocol
3.12.3) Component Locations
3.12.4) Change Notification



https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.xbjgq355x7i7
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.id4jvllsdka2
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.81sf4tpnve92
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.uu761a21jphh
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.mv31gyzb5hab
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.q0gb9c9egtrz
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.56gwm8kct44v
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.1jxpc6kyc9n8
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.58uxblqyzko
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.khny112b2vyp
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.wahi9dx6nuor
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.ssxzr1ai4w0u
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.8mcaxf5i9lui
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.qydo8pytgcdn
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.csjlsjn9saji
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.9b05g9j8lf6z
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.bt6uhwjq1gif
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.t86n15h64ei7
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.w7a9s4x61kc4
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.jdiyf832r64a
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.fnkfjxdc0sy
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.vbdsq2kjk0ou
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.rd8nr1un4q8u
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.w8d58ua0i5hn
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.5l79keujfec8
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.c4cog2qc6f5o
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.7ked45vbq0vm
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.a7f5r72edxn5
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.oond1cba64k1
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.7f22vpyv9lp7
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.puqeerqvwwhv
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.851k5ltu8lax
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.7cxhvko2fzbm
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.tf51lygmfio1
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.1j8yxovbpzma
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.azqivbeyoi0d
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.y01eh4me0udt
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.4k1s74uaitza
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.j9xwin2dzole
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.li792f5a96ql
https://docs.google.com/a/delving.eu/document/d/s_RbsVoM0V_eavYFctj-huA/headless/print#heading=h.d1ufq0ouq5ul

3) Component Design

In the following sections we describe the necessary infrastructure building blocks for
realizing the Process Model as an efficient and sustainable way of working, as depicted in the
above diagram. Then we discuss some important aspects of how the blocks can best be
connected to create a network pipeline.

The pipeline we envision will strive to streamline the work that human participants must
perform by providing intuitive interactive tools, while automating all of the underlying machine
processes to be triggered by notifications of changes in the data.

Some of the components described here are purely computational, while others are
examples of where interfacing with people receives far more attention. The reference process
model describes components as being sometimes part human and part computer, with an
emphasis on humans with growing computer-augmented intelligence, rather than autonomous
artificial intelligence.

3.1) Collection Registration

Organizations are of course already involved in the process of registering the data for their
collections, and they have been doing so for some time. For this they are using their own chosen
tools, so although the Collection Registration component of the pipeline is identified here, it is the
domain in which we have the least influence. Software vendors and their customers decide when
upgrades happen, so we can only propose the model to them which should survive a cost-benefit
analysis and therefore provide incentive to adoption.

3.1.2) Integration with the Pipeline

We cannot concern ourselves with the specifics of how an existing Collection Registration
system functions, because these systems are many and varied. The only thing that we need to
talk about is how these systems can eventually arrive at increasing levels of integration with the
pipeline over time, and what we will do in the meantime during the transition.

The issue is that full integration will prompt modifications in how the software behaves for
the users, so it will require some software development on the part of the vendor. Presumably
the incentive to do so will increase as our infrastructure takes shape.

3.1.2) Open Source vs Closed Source

There are opportunities for accelerating the integration of Collection Registration systems
with our pipeline when the systems are open source. We then have the opportunity to define
projects in which the necessary integration components can be built and ensure that the
developers approve of the approach.

It may make sense at some point for our infrastructure components to include an offering
specifically for Collection Registration, which would then be thoroughly integrated with the pipeline
out of the box.

3.2) Analyzer
When a dataset is introduced by a provider for the first time, very few assumptions can or
should be made by the pipeline about what it contains. Exports expected to be precisely



according to an established interoperability standard can prove to be lacking or even misleading in
important ways. People tend to apply standards in different ways, depending on how well the
associated educational efforts are coordinated.

The only way to be certain about the structure and content is to perform a thorough
analysis which assumes nothing the first time. In the end we also want to track the change in the
analysis through history, to expose the improvement (or regression) over time. For this to work,
all of the analysis products, the statistics, should be recorded in XML for easy consumption by
subsequent components of the pipeline and other tools.

3.2.1) Multiple Repeatable Phases

The sheer size of some datasets can make analysis more challenging, but the software
can be built to tackle the problem bit by bit. Analysis can be performed in multiple phases, so that
the conclusions of one phase informs the scope of the next one. This is purely an optimization
which avoids combinatorial explosions which would overwhelm common computer hardware.
When the process is broken into phases, it becomes more interactive, and there should be no
exceptional hardware requirements.

For example, the difference between an identifier field which has unique values and a
descriptive paragraph which also effectively has unique values can be detected without the need
to exhaustively examine all values at the outset. A paragraph is a very bad identifier, but in terms
of uniqueness it looks the same. Once the real identifier is revealed, the exhaustive test for
uniqueness, which is very resource-intensive, can be restricted to the chosen field and not bother
considering the paragraph field to be a candidate.

Once a dataset has been taken through all of its phases the first time by a human
technician with insight into the data, the analysis should be complete. The decisions made to
connect one phase to the next will have been recorded and these instructions will allow for more
rapid re-analysis in the future in a single pass. The human interaction can be bypassed since the
knowledge is already present in the analysis instructions.

3.2.2) Value and Occurrence Histograms

The first phase of the analysis scans the dataset gathering histograms of the values that
appear. In XML these values are associated with paths, so the histograms contain counts of how
many times each value appears at every encountered path. This is a straightforward algorithm if
it is careful to omit specific paths when they exceed resource usage thresholds. Recording a
histogram for a field with unique values is of course futile, since all counts would be equal to one,
so a threshold-based approach will have overburdened histograms “explode” and be discarded,
freeing up resources for others.

The practical issue of deciding when a threshold has been crossed is of course
somewhat arbitrary, but this is not a concern since we know that future phases in the process
can compensate. The person doing the analysis can take smaller steps on the way to a full
result. There should be enough information gathered for the paths that have been abandoned for
the technician to adjust the initial naive assumptions and rerun the histogram analysis with
resource usage in mind.

3.2.3) Vocabulary Enumeration



Metadata in Collection Registration systems will inevitably reference elements lists or
tables of entities, assuming that the data is maintained in normalized form. These lists can be
seen as vocabularies, although often their scope doesn’t extend beyond the local database.
Even if the data is not normalized, it is often the case that certain fields contain only a relatively
small number of different values. In either case, the references may or may not refer to elements
of shared lists outside of the local system.

For the Aggregator to be able to attach meaning to the values in these fields, connections
must be made with the values of lists that can be shared by all providers. Without these
connections, the Aggregator cannot provide unified access to all datasets.

The analysis must initially reveal which fields abide by vocabularies and subsequently
ensure that all their values are gathered together for the process of resolution. Resolving a value
amounts to establishing the connection via a coreference, indicating that the local value is to be
interpreted as a given value from a shared list.

No assumptions can be made about whether the vocabularies were properly used.
Instead, an expert must evaluate the usage of vocabulary values based purely on what appears in
the source. The Analyzer will be able to reveal which fields correspond to vocabularies and
assembile lists of all the values used together with their frequencies. These compiled lists are to
be passed on to the Coreference Suggester (3.5 below) to initiate the process of establishing the
connections.

3.2.4) Uniqueness Validation

For the data to be useful, it must be possible to refer unambiguously to its constituent
parts, so these must be identified with fields which function as unique identifiers. Often these
fields are automatically generated and therefore guaranteed to be unique, but not always. In a
dataset with millions of records, we must be able to verify that each one of the millions of
identifiers never appears twice, regardless of how the data is stored.

Testing uniqueness can be a resource intensive process since there is no way to do it
without holding a complete list of values and comparing, so we should expect to aim it at very
specific fields manually as an optimization.

3.3) Mapping Builder

The Mapping Builder will be the most advanced and elaborate graphical user interface in
the whole infrastructure, because building a mapping is no simple matter. Users must be able to
work with sophisticated tools which expose knowledge of the target schema, and capable of
hiding much of the underlying complexity.

Building a mapping is best done through a collaboration among multiple experts
representing different points of view. Since the ultimate result has to be a single set of
instructions, we are clearly dealing with a process of discussion and negotiation.

Also, since a mapping change can have far reaching consequences (triggering much
work, hopefully all automated), the process and its individual steps must be managed carefully.
There is a strong parallel between building a mapping and writing software code (if they are not
essentially the same), so we would be wise to look to software development practices for
inspiration, and to use the same tools where possible.



3.3.1) Structure Transformation

Transforming the structure of data from a source schema to a target schema should
involve at least two participants, since expertise is required regarding each of the two schemas.
The data provider knows the structure and intent of the source schema (Source Schema Expert),
and the aggregator is has a solid knowledge of the target schema (Target Schema Expert). The
transformation has to produce data which can be merged with data from other providers so the
aggregator can provide unified access.

Building the required series of instructions is generally a process which often follows the
80-20 rule (Pareto Principle) where the bulk of the work is easy and quick relative to the effort
required to finish the job. An initial transformation can be put together quickly by choosing “from”
and “to” fields, but the devil is in the details that follow.

An example of a more difficult challenge would be if a field in the source data corresponds
to more than one field in the target schema. This could be because the field is “coded” with an
internal syntax which should be parsed to reveal its parts, or because the choice of which output
field to use depends on the field values.

The first case requires some work to parse and interpret the field and the ability to create
multiple field values as a result. The second would be a conditional mapping which decides
which output field to fill depending on a lookup of the incoming value.

3.3.2) URI Generation

When a hierarchical record in the source schema is decomposed into a set of semantic
triples, all of the entities must be identified uniquely with a URI. When these URIs are not already
present, they can usually be generated. It is not enough to make up new random values for the
URIs because there will be multiple URIs which should be able to consistently refer to the same
thing. Generating the URI needs to be a predictable repeatable process whenever possible to
make this work. The URI generator functions therefore base their work on contextual data, and
the Mapping Builder must allow users to choose parameters from related parts of the source
documents.

The tools for URI Generation will have to provide for a flexibility and transparency in the
description and execution of the various strategies. The functions must be published and
maintained in a form which both explains how they work and makes them available to be included
as part of the mapping execution. Only by open publication of the functions can we hope that they
are optimally re-used by various people trying to accomplish the same thing.

This process is the responsibility of the URI Expert, who will also need tools to help
evaluate whether the decisions made were correct. The generated URIs must be checked for
appropriateness and uniqueness, and this will involve software to collect and compare on a large
scale. It must be possible to verify the effectiveness of the strategies used, and the only way is to
have an overview of all URIs used. The statistics coming from this should clearly reveal errors
before they become a problem, and they should also expose samples of the results so that they
can be evaluated in terms of their structure.

3.3.3) Negotiation
A mapping bridges two worlds, in a sense. This is why we speak of building the mappings

6



as a process of negotiation. The Provider and the Aggregator must get together in order to
ensure the authenticity of the transformation in properly rendering the data’s meaning.

The data provider’s experience is in trying to carefully codify their data as well as they can
within constraints in terms of budget, manpower, and equipment. Challenges on the data
provider side are usually met by trying to abide by standards where possible and where they are
understood, and keep the data as normalized as much as possible (low redundancy).

The aggregator’s view of the mapping involves getting the data from various sources into
a state where it can be effectively queried as a whole. Every effort that they expend to make the
data more explicitly compliant to a model such as the CIDOC-CRM is well spent because only by
carefully homogenizing all the data can it properly answer queries over many datasets.

The bridge between the two worlds can be built in any of a number of ways, but there are
some basic features of the interaction which must form the foundation. Either participant must be
able to present a proposal for a change, it must be possible to carry on a discussion of the
proposal which persists for later reference, and there must be a distinct approval event which
causes the change to be officially adopted. It is precisely this process which takes place already
on a daily basis among software developers, so this is a good place to look for inspiration.

3.3.4) Version Control

All serious software developers work with version control systems which track every
individual change in their source code over time. This is common practice because the potential
consequences of small changes can be immense, and accountability is indispensable. The
same is true for mapping, so there is every reason to think that a similar discipline is required.

The software community has refined version control practices through several
generations already, and now there is an advanced system of version control with branching and
merging in common usage called “git”. There are clear notions of identity, ownership, and
accountability for changes.

Changes can be proposed, prepared for execution, and discussed before those
responsible make the ultimate decision to have them adopted. The terminology is about creating
a “pull request” in another branch which can be executed to modify the “master” branch by those
in charge. A pull request has a discussion attached and it can be discarded if it is not judged as
fit.

Software developers have all of these functions built into their development environments,
so we should work to ensure that any tools that the various responsible actors in the mapping
pipeline also have the “git” functionality built in. Some of the complexity underlying the process
can be hidden, but it is important to know that there is a rock-solid version control system
underneath. If problems appear, software developers will be able to rectify them “by hand” given
their daily experience with the underlying tools.

3.4) Mapping Memory

Each dataset is of course in some respect unique, and often they are recorded in different
ways even if the name of the software package or storage schema is the same. However, there
are generally many more similarities between datasets than there are differences, so it makes
sense to have a system in place which encourages sharing of accumulated mapping



experience.To enable the effective sharing of mapping knowledge and experience, we speak of
Mapping Memory, which should be made available to those collaborating on building a mapping.
They should be able to receive hints which offer easy adoption of the elements of mappings
which have already been done. This is a shared service, and should be constructed as a kind of
query mechanism searching the contents of all existing mappings to date. As the Mapping
Memory grows, it becomes easier to build new mappings.

It makes sense to have the Mapping Memory also be the place where all published
mappings are stored, because its logic will have to refer to them. This will probably be the Git
version control system.

3.4.1) Variations on a Theme

In many real-world cases, a mapping that needs to be constructed will look surprisingly
similar to one that has already been done. This is even more obvious in cases where a provider
stores a number of datasets in related or the same information systems, and in these cases one
mapping is usually either identical or a small variation on one that has just been built.

The Mapping Memory should allow users to kick off a mapping by first adopting an existing
one, yet available for minor adjustments. In practice, it's surprisingly rare that a mapping can be
applied to two datasets as is. Mapping descriptions are sufficiently small that we can readily
store multiple copies on the assumption that small modifications will nearly always be needed.

3.4.2) Experts in Live Contact

The Mapping Memory service should also provide services which support live
communication among mappers while they are working. Since they are all trying to accomplish
similar things, it can be very helpful to encourage them to share their expertise with others. A
pool of expertise could be formed, which may be integrated with an associated educational
program. Features like this are relatively easy to implement and can raise overall quality
considerably.

3.4.3) Advanced Matching

Ultimately there are really attractive opportunities for applying some more sophisticated
techniques to the process of searching for similar mappings. Even simple tricks like fuzzy
matching of paths or tag values can help find non-exact matches. Beyond that, there will be any
number of collaborative filtering, clever indexing, or machine learning strategies which could prove
very useful. Itis a worthy research direction.

3.4.4) Mapping Comparison

The nature of mappings is such that they are diverse in their details but there are great
similarities among them as documents. When all mappings are described in X3ML we have the
ability to create an inexpensive recursive comparison algorithm.

An efficient comparison algorithm would allow us to create visualizations by projecting
mappings into 2D or 3D spaces and have them cluster according to similarity, so that we begin to
understand more of the macroscopic features of a mapping infrastructure. A Mapping Manager
could look for collaboration with others in the “nearby” space to tackle a given challenge.



3.5) Coreference Suggester

Once the actual values for a vocabulary field have been collected by the Analyzer, they are
passed on to the Coreference Suggester. The ultimate goal is to build up maps of coreferences
which can be used to resolve vocabulary values in the Mapper, but we will not be willing to trust
computers to make these decisions on their own. This is why we refer to this component as a
“suggester”, since it’s job is to come up with candidate coreferences which will find their way to
the user via the Coreference Endorser. Before a coreference is endorsed by a curator, it is not
considered “real”.

3.5.1) Competing Heuristics

There are many ways to look for coreference candidates, and it may be hard to predict
beforehand what works best. At the same time, it is of paramount importance to get this right, or
at least determine scientifically if we are moving in the right direction.

It would seem sensible to construct the Coreference Suggester in such a way that it can
utilize multiple heuristics in a plug-in fashion, so that programmers from various research
departments can try their hand at developing algorithms. This is predicated on being able to
measure success, and there is no better measure than users.

With the necessary additions to the Coreference Endorser such that the users are easily
able to give feedback to the Coreference Suggester, we have the necessary ecosystem for
staging a dynamic Darwinian selection of heuristics. The users of the Endorser will have to be
prepared to give their opinion of how good the alternatives were. They should not be told which
heuristic was responsible, to avoid bias, and it may be best to provide answers coming from
multiple heuristics beside each other so that the curator can easily indicate which was the best
set of suggestions.

3.5.2) The Question of Why

When someone suggests that you do something, you usually don’t hesitate to ask them
why they made this suggestion. There is no reason that a Suggester should not be expected to
have an explanation for the suggestions it makes. In fact, starting at a baseline design where a
heuristic is required to explain its reasoning is an excellent way to encourage transparency.

The explanation of the reasoning should be available, if not always visible, so that the user
preparing to approve or disapprove will be as informed as possible. If a heuristic has presented
an answer but for apparently the wrong reason, the curator should be able to indicate this and the
feedback must be used.

3.6) Coreference Endorser

The choices of which coreferences to use and which to discard will be made by a human
expert. The Endorser component is a user interface which strives to streamline the potentially
tedious process of making many small decisions. At its core, it will be a relatively simple
interface, but since this process is so important, it deserves extra attention to detail so that it
functions optimally for the users.

3.6.1) Coreference Map Building



A coreference map is essentially a lookup table which is ready to provide a replacement
value for any value encountered in the source or to augment a value with additional information
such as a URI. The decision to use or discard one can be indicated in a single user interface
gesture, but it should be presented in as rich a context as possible so that the decision is well
grounded.

When a coreference map is to be built for the first time, it amounts to making a potentially
large number of decisions, so it may be useful to make sure that the Endorser is also capable of
dividing the work and distributing it amongst a number of users.

3.6.2) Coreference Maintenance

Eventually new data will be entered into the local registration system, prompting the
addition of new entries in the internally referenced lists. When internal lists are expanded, the
new values will not be recognized by the existing coreference map.

An entry with an unrecognized value would presumably be rejected automatically by the
aggregator’s validation in the pipeline, and fed back to the data provider. To prevent the
unnecessary back-and-forth communication that this implies, there should be a check performed
every so often which can locally prompt the addition of the necessary coreferences and trigger
the process.

The amount of work is much less than during initial map building, so it will seem much
more like making a few more corrections to fix the data so that it can again be exported.

3.7) Coreference Store

The curated coreferences resulting from the Analyzer-Suggester-Endorser pathway must
be stored in such a way that they can be used by various other components of the pipeline.

The main user of the accumulated coreferences is the Mapper, since it is responsible for
replacing all of the locally-used vocabulary values to values from shared lists advocated by the
Aggregator. The large volume of work that the Mapper has to do gives us an incentive to ensure
that the Coreference Store is maximally optimized. The use of a triple store is probably not the
best approach, but instead we may need to select a specific technology which is built to work at
“‘web-scale” from the start. Lookups must be done very frequently and so speed is important.

The Coreference Suggester must also be informed by the coreferences which have
already been chosen so that it avoid asking a user any question which has already been asked
and answered. The complete list of vocabulary values used in practice are provided by the
Analyzer, and the first process applied to this list will be to filter out the ones already known.

Also, the accumulated coreferences represent a valuable resource which could be used
to improve the quality of the source data, so they can be made available to the Recycler for
eventual reintegration into the source.

3.8) Mapper

There is a clear distinction between the building of a mapping by experts in collaboration
and the actual execution of the mapping in the production pipeline. Building is a slower more
painstaking human challenge, while execution can be triggered at any time. Needless to say,
execution of the mapping will make up part of the refinement process during the creation of the

10



mapping by experts, but that can take the form of statistical analysis of the results of the mapping
run locally, perhaps only on representative samples.

3.8.1) Reacting to Changes

The notion of a pipeline is important in this discussion because it metaphorically implies
that the moving parts are things that start to work whenever they are called upon by the flow of
data. We see mapping execution as something which should not require human attention once it
is constructed and configured. It is a connection between pipes, with one input and two outputs.
Individual records may flow through, or batches.

3.9) Validator

The Validator plays a critical role in the pipeline as the gatekeeper which separates the
good complete data from the data which cannot be used. It must keep track of several important
aspects of the data that it evaluates, and the effectiveness of the fixing and enrichment processes
depends heavily on how well the Validator describes the nature of the problems that it has
identified. It is not enough just to separate the good from the bad.

3.9.1) Target Schema Validation

The main output of the mapping engine will be the correctly mapped records, so to
validate their correctness is the job of the engine. Output validation will pay attention to both
structure and content, since the resulting data must express relationships properly and the
entities referred to must be known to exist.

3.9.2) Error Filtering and Rerouting

The other output of the mapping engine is the error stream, which will be filled with
everything that did not map to satisfying output data. As records are mapped and validated, any
problems will manifest themselves as error records in the pipeline.

The pipe leading from the error output must transport the data to the Recycler so it can be
communicated to the data provider, including a description of why it was not accepted as valid.
Ideally there should be an integration with the collection management system used by the
provider to automate the notification and manage the fixing process. In reality, the process will
probably have to start as a partially manual operation.

3.9.3) URI Uniqueness Checking

The data being sent into the Query Engine must have no ambiguity in the way it identifies
its parts. The Validator must therefore pay close attention to the URIs generated by the Mapper to
ensure that they are indeed properly constructed to be completely unique. Only the Aggregator
can ensure this uniqueness, and since the list of different URIs from all providers together must
be maintained and checked against, this uniqueness checking can be resource intensive.

3.10) Recycler

A difficult challenge presents itself for the data provider in this scenario, and it is one
requiring the most multi-faceted tools. The provider will experience a flow of invalid records and
correction requests back through the pipeline, and there must be a way to evaluate and act upon

11



them so that invalid records can be promptly resubmitted with corrections.

3.10.1) Step by Step

The main infrastructure challenge is to automate, streamline, and refine this curation
process, but an parallel challenge is to facilitate the transition to the new scenario universally.
Every kind of provider with their own existing system should be able to participate from the
beginning. It is our challenge to make this curation streamlined and fully integrated, but this
cannot take place immediately.

To smooth the transition, we will need to provide a way to easily build and maintain a
potentially large list of corrections and enrichments so that they can be re-used as long as they
are needed (ie until their contents have been adopted and they are rendered obsolete). This
collection of adjustments is referred to as a coreference map, where each entry asserts that
something in the local data store is related to an element of published shared data such as a list
of places.

Feedback from the pipeline will be sent back to the data provider, and there is a potential
that their data management systems can be built to receive the feedback and make it easy to act
on it. We cannot assume that this will be built into existing systems anytime soon, but this
process could start more simply. Feedback may initially be sent via email, for example, so that
humans can act on them and make the corrections manually in their existing systems.

By this means, we can at least start the process of improvement. As more providers
participate, we should look for ways to integrate and automate, either with existing systems or by
migrating existing systems to software that already has the mapping pipeline integrated.

3.10.2) Reintegration

Eventually, and completely at the discretion of the data provider, the knowledge embodied
in the coreference map can be adopted into the source data store. New fields can be added for
storing extra metadata such as URIs or cached Geo-coordinates, multilingual labels, or anything
else available in the shared data.

How this is done specifically in terms of software is impossible to describe in general if it
is to be performed by various closed-source software vendors. It will probably involve adjustment
of data models and restructuring of user interfaces. Open source solutions for collection
management can more easily be adapted to play a more integrated role in the pipeline.

To complete the implementation would involve providing network interface elements like a
REST HTTP or XMPP interface so that the registration software can be reached by the pipeline to
accept change requests. The pipeline itself will be accessible in standard and well known
network interfaces, so it should not be difficult to add client features to existing software.

There may be a general strategy for this which could be adopted by software builders
wanting to participate. We can assume that records can be identified uniquely, so if it were
possible to simply flag records as being returned by the aggregator, with an accompanying field of
explanatory text, we would be well on the way to integration.

3.11) Query Server
The mandate of the Aggregator is to provide unified access to the data contained in the
various datasets they manage. This can be done in many ways, and the future potentials are

12



another worthy domain of research, but within the scope of this pipeline infrastructure the goal is
nothing more than to feed them with much needed high quality data. The focus of the pipeline is
actually more on the cyclic flow back to data providers which promotes the improvement of the
source data.

The only assumption that we should probably make initially about the Query Server
component’s interface is that it should be fed with CRM-RDF. However, we can see that in the
future it will need to be notified when a new dataset or an update is ready, and then be able to
request that it be sent.

3.12) Pipeline Integration

The existing data delivery strategies tend to only support movement or copying of data in
one direction. We must be conscious that this is currently the way many people think, and that
the technologies behind this are barely sufficient for our purposes. They probably represent a
hindrance. Instead we have to look for delivery mechanisms which lend themselves to creating a
multi-directional flow.

3.12.1) Harvest via HTTP

The OAI-PMH protocol was invented in the first years of the millenium as a means by
which metadata records could be fetched via a connected series of HTTP requests. Each
request returns a block of records and a token with which the next can be retrieved.

There is nothing wrong with an HTTP approach, were it not that there are many different custom
implementations of OAI-PMH and that they often lack features. Also, any HTTP based protocol
requires that both sides of a two-way conversation be reachable web servers, which can prove
very inconvenient.

3.12.2) XMPP Chat Protocol

Since the data transported around the network is best expressed as XML records, the
XMPP protocol seems a natural fit. XMPP was designed as a chat service, so it'’s presence
information and buddy list features are handled out-of-the-box. The participants in the delivery
infrastructure will be many, so it is important to easily keep track of which machine is connected
to which other one, and that they reflect their presence/absence on the network at all times.

Like in other chat protocols, participants form a network and can exchange messages
between peers in any direction at will, and there are established protocols for orchestrating these
exchanges like IQ Query Action Protocol (http://xmpp.org/extensions/xep-0099.html). This allows
the movement of individual records among the nodes in the infrastructure, which creates
opportunities to make the whole infrastructure act as if it is a social network of people and
machines.

3.12.3) Component Locations

The components depicted in the diagram and described here are not given a location,
either by the Provider or by the Aggregator, but that is because it is not clear that this is an
important distinction to make. Since these modules are just software, and the intention is to build
them in open source, it doesn’t matter if they appear in more than one place. Indeed, it makes
great sense to have some of these modules actually function in multiple places where possible.

13



For example, the experts involved with building a mapping should be able to make use of
the Analyzer whenever they want to scan or re-scan the source data to gather more or different
information to inform the mapping. But they should also be able to run the Mapper to see what
results are being produced by the mapping they are in the process of building, and to evaluate the
mapping results they should also be able to use the Validator.

The modularity described here is not the physical modularity. Whenever it makes sense
because it reduces communication overhead or inconvenience, logical modules can be made
available in several places in the physical infrastructure. The Provider could potentially be able to
check that the data being delivered with the Validator before the Aggregator finds out.

3.12.4) Change Notification

A great many different things can change at any time in this process scenario, and most
of the changes should have the effect of triggering activity elsewhere.

Some changes are small, like the manual updating of an individual record. In the chat
environment, this record could be sent on its way to be mapped and aggregated without delay,
and feedback could be immediate as well.

Other changes have much larger implications, such as the adjustment of a source or
target schema or changing a mapping decision. Notifications for this kind of change will trigger
entire datasets to be remapped and revalidated, so these critical changes must be taken much
more seriously and perhaps involve human intervention.

The instructions guiding the mapping machinery can change based on new insights,
discovered errors, or new policy decisions, in which case the records previously mapped must
be once again run through the mapping engine. Changes can occur in terms of the schema
syntax, vocabulary usage, URI generation policy, etc, so they can come from any of a number of
different actors as well.

Due to the volume of computation that must take place in the event of a change, it would
be wise to provide feedback to those who propose the changes so that they are aware of the size
of the cascade that their changes will cause.

Changing the mapping engine component in terms of its currently active instructions is not
hard or time-consuming, but re-running millions of records will be, so the triggering of the large
scale re-mapping should involve human interaction rather than being automatically triggered.

Providers who launch the remapping of their source data may also have to be prepared
for a whole new and different set of errors which can require human attention, flowing back
through the error channel.

14



