It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing

Tom Gruber Founder and CTO, Intraspect Software Formerly at Stanford University tomgruber.org

(c) 2000, 2003 Thomas Gruber

What is this talk about?

What are ontologies? *Theoretical perspective*What are they for? *Pragmatic perspective*How do we build them? *Design perspective*

What is an ontology?

- An ontology is an explicit specification of a conceptualization.
- A conceptualization is an abstract, simplified view of the world that we want to represent.
- If the specification medium is a formal language, the ontology defines a representational foundation.

Ontology, Knowledge, and Commitment

 The Knowledge-level: a level of description of the knowledge of an agent that is independent of internal format.
 An agent "knows" if it acts like it does.
 A software agent "acts" by telling and asking.

An agent commits (conforms) to an ontology if it "acts" consistently with the definitions

Ontological Commitments are agreements to use the vocabulary in a coherent and consistent manner.

■ Common ontology ≠ common knowledge.

What isn't an ontology?

a database or program because they share internal formats a conceptualization because it isn't a specification - it's a vision a table of contents but wait, isn't a Taxonomy an Ontology? only if it defines a set of concepts

Ontology and Language

Language = syntax + vocabulary

One can use the ontology as a representation language
 Penman ontology for natural language processing

*ML industry agreements

The role of formalism

- Formal specification helps communicate the definition of terms in reader- and context-independent ways.
- Formal language semantics allows some automated consistency checks.
- Formal axiomatization is never sufficient.
 - It always comes down to the primitives!

Example Ontologies: Very Formal

Formal => (partially) Computable Semantics

EngMath - basis for mathematical modeling of physical systems

- physical quantities, units, dimensions
- Frame Ontology unifying theory for framebased representation systems

classes, relations, slots

Configuration Design - for representing a design task

components, subparts, attributes, constraints

Example Ontologies: Semiformal

Semiformal => useful computations on formal part

- Reference Dictionaries and Thesauri domain terms and untyped relations among them
- Ontology.org XML based industry standards for e-commerce data exchange
 - product, price, …
- CIDOC CRM conceptual reference model for cultural heritage data
 - place, time span, appellation, right

Example Ontologies: Informal

Informal => human interpretation aided by computation

 (Non-semantic) Web Ontology - for identifying and linking information objects
 Thing-with-URI, Link

 Intraspect's Context Ontology - for capturing and sharing information in its context of use by knowledge workers
 parent/child, document, message, comment

The Intraspect Ontology

Hierarchy with typed nodes allow multiple parents, no inheritance Implicit metadata (contributor, date, file type) Explicit metadata titles and descriptions user-defined types and attributes ("deliverable") Conversational relations next-in-thread/in-reply-to (inferred from email) context-sensitive annotation

Representing the Context of Use

Why? Knowledge is created in context; information in context can be reused.

Ontology as Content

and a star of the local of the local star in the star of the st

Sometimes the ontology is also a KB.

 Yahoo ontology as real estate
 VerticalNet, CommerceOne - catalog entries as the basis for netmarkets
 library taxonomies - such as NLM initiatives for medical literature (UMLS)

What are they for?

A Pragmatic Perspective

Ontologies are not about truth or beauty.
They are agreements, made in a social context, to accomplish some objectives.
It's important to understand those objectives, and be guided by them.

Why Create Ontologies?

to enable data exchange among programs to simplify unification (or translation) of disparate representations to employ knowledge-based services to embody the representation of a theory as a reference to guide new formalizations to facilitate communication among people

Ontology as Contract

Purposes of Ontologies

- data exchange
- Unification and translation
- calling knowledge services
- representing theories
- human
 communication

Parties to the Contract

- programmers
- library scientists, database mediators
- programmers, netbots
- scientists, Al programs
- collaborators

Ontologies as Designed Artifacts

The Design Perspective

- Ontologies are <u>designed</u> to meet functional objectives.
 - data exchange, unification, representation, communication ...
- Representational choices are design decisions.
- Design methodologies include validation, optimization against design criteria.

General Design Criteria for Ontological Engineering

- Clarity context-independent, unambiguous, precise definitions
- Coherence internally consistent
- Extendibility anticipate the uses of the vocabulary, allow monotonic extension
- Minimal Encoding Bias avoid representational choice for benefit of implementation
- Minimal Ontological Commitment define only necessary terms, omit domain theory

 Ontologies are what they do: artifacts to help people and their programs communicate, coordinate, collaborate.
 We should design and build them

for humans!