
Formalization of the CRM:
A first-order attempt

Carlo Meghini and Martin Doerr

Istituto di Scienza e Tecnologie della Informazione
Consiglio Nazionale delle Ricerche – Pisa

Iraklio, October 6th, 2015

Outline

I Introduction: Why, how, what
I Preliminaries
I A first-order theory of the CRM
I Post-reflections
I Conclusions

Introduction: Why doing it?

A representation language without formal semantics in incomplete.

Cannot define inference, i.e., consistency checking and querying.

Cannot really evaluate whether the model correctly reflects and predicts
reality.

Communication to other researchers:

I Understanding
I Computational Research
I Comparison
I Extension
I Experimentation

How to do it?

Choose your favourite theoretical tool:

I Mathematical Logic
I Computational Logic
I Set Theory
I Category Theory
I you name it

My choice: mathematical logic, because I know it (a bit)

But the are also advantages:

I discourse formalization (syntax and semantics)
I argument formalization (proof)
I many results to use (e.g., description logics)

What did I do so far?

1. First-order logic translation of (parts of) the specs
2. Computational analysis of the resulting theory

I Result: the theory is tractable
3. Definition of what a KB is (not really needed for an ontology,

actually)
4. Theoretical implementation (in datalog)

Some things remain to be done:

1. Convince Martin and the SIG
2. Convince some journal editor
3. Practical implementation

Related Work
The work of formalizing in FO logic a semantic data model has been
done more than thirty years ago by Ray Reiter.

I From this work we draw the basic principles of our formalization.
I The CRM specification includes some constraints, e.g., shortcuts

and quantifications, that have not been treated by Reiter.

Shortcuts and quantifications (and much more) have been treated by
Description Logics, today mostly used via the Ontology Web Language of
the W3C.

We do NOT buy into DLs or OWL for several reasons:

1. OWL uses IRIs, we do not need to go that far
2. OWL does not cover strong shortcuts
3. OWL and DLs do not distinguish known from unknown individuals

We buy into Levesque & Lakemeyer L logic.

Preliminaries from Reiter’s work

Definition of the CIDOC Conceptual Reference Model xviii

Examples

E1 CRM Entity

E19 Physical Object

E18 Physical Thing

E77 persistent Item

E39 Actor

E51 Contact Point

E53 Place

E44 Place Appellation

E46 Section Definition

E48 Place Name

0,n

0,n

P76 has contact point
(provides access to)

E45 Address

E47 Spatial Coordinates

0,n

0,n

P87 is iden tified by
(iden tifies)

1,1

E70 Thing

0,n

0,1

0,n

0,n

0,1

P59 has section
(is located on or wi thin

P55 has curre nt location
(curr ently holds)

0,n

1,n

P53 has former or current location
(is form er or current location of)

P88 consists of
(forms part of)

0,n

E41 Appellation

P58 has section definition
(defines section)

0,n

fig. 2 reasoning about spatial information

The diagram above shows a partial view of the CRM, representing reasoning about spatial information. Five of the main hierarchy
branches are included in this view: E39 Actor, E51 Contact Point, E41 Appellation, E53 Place and E70 Thing. All classes are
shown as blue-white rectangles. Properties are shown as single arrows. In some cases the order of priority for property names has
been reversed in order to facilitate reading the diagram from left to right. Double arrows indicate IsA relations between classes
and their subclasses or between properties and their subproperties. 'Shortcuts' are indicated with light grey rectangles and their
names are written in italics, such as the P59 has section (is located on or within) between E53 Place and E18 Physical Thing,
which is a shortcut of the path through E46 Section Definition. .

As can be seen, an instance of E53 Place is identified by an instance of E44 Place Appellation, which may be an instance of E45
Address, E47 Spatial Coordinates, E48 Place Name, or E46 Section Definition such as ‘basement’, ‘prow’, or ‘lower left-hand
corner.’ An instance of E53 Place may consist of or form part of another instance of E53 Place, thereby allowing a hierarchy of
geometric ‘containers’ to be constructed.

An instance of E45 Address can be considered both as an E44 Place Appellation–a way of referring to an E53 Place–and as an
E51 Contact Point for an E39 Actor. An E39 Actor may have any number of instances of E51 Contact Point. E18 Physical Thing
is found on locations as a consequence of being created there or being moved there. Therefore the properties P53 has former or
current location (is former or current location of) (and P55 has current location (currently holds) are regarded as shortcuts of the
fully articulated paths through the respective events. P55 has current location (currently holds) is a subproperty of P53 has former
or current location (is former or current location of). The latter is a container for location information in the absence of
knowledge about time of validity and related events.

An interesting aspect of the model is the P58 has section definition (defines section) property between E46 Section Definition and
E18 Physical Thing (and the corresponding shortcut from E53 Place to E19 Physical Object). This allows an instance of E53 Place
to be defined as a section of an instance of E19 Physical Object. For example, we may know that Nelson fell at a particular spot
on the deck of H.M.S. Victory, without knowing the exact position of the vessel in geospatial terms at the time of the fatal
shooting of Nelson. Similarly, a signature or inscription can be located “in the lower right corner of” a painting, regardless of
where the painting is hanging.

Classes

Classes are unary predicate symbols

Definition of the CIDOC Conceptual Reference Model xviii

Examples

E1 CRM Entity

E19 Physical Object

E18 Physical Thing

E77 persistent Item

E39 Actor

E51 Contact Point

E53 Place

E44 Place Appellation

E46 Section Definition

E48 Place Name

0,n

0,n

P76 has contact point
(provides access to)

E45 Address

E47 Spatial Coordinates

0,n

0,n

P87 is iden tified by
(iden tifies)

1,1

E70 Thing

0,n

0,1

0,n

0,n

0,1

P59 has section
(is located on or wi thin

P55 has curre nt location
(curr ently holds)

0,n

1,n

P53 has former or current location
(is form er or current location of)

P88 consists of
(forms part of)

0,n

E41 Appellation

P58 has section definition
(defines section)

0,n

fig. 2 reasoning about spatial information

The diagram above shows a partial view of the CRM, representing reasoning about spatial information. Five of the main hierarchy
branches are included in this view: E39 Actor, E51 Contact Point, E41 Appellation, E53 Place and E70 Thing. All classes are
shown as blue-white rectangles. Properties are shown as single arrows. In some cases the order of priority for property names has
been reversed in order to facilitate reading the diagram from left to right. Double arrows indicate IsA relations between classes
and their subclasses or between properties and their subproperties. 'Shortcuts' are indicated with light grey rectangles and their
names are written in italics, such as the P59 has section (is located on or within) between E53 Place and E18 Physical Thing,
which is a shortcut of the path through E46 Section Definition. .

As can be seen, an instance of E53 Place is identified by an instance of E44 Place Appellation, which may be an instance of E45
Address, E47 Spatial Coordinates, E48 Place Name, or E46 Section Definition such as ‘basement’, ‘prow’, or ‘lower left-hand
corner.’ An instance of E53 Place may consist of or form part of another instance of E53 Place, thereby allowing a hierarchy of
geometric ‘containers’ to be constructed.

An instance of E45 Address can be considered both as an E44 Place Appellation–a way of referring to an E53 Place–and as an
E51 Contact Point for an E39 Actor. An E39 Actor may have any number of instances of E51 Contact Point. E18 Physical Thing
is found on locations as a consequence of being created there or being moved there. Therefore the properties P53 has former or
current location (is former or current location of) (and P55 has current location (currently holds) are regarded as shortcuts of the
fully articulated paths through the respective events. P55 has current location (currently holds) is a subproperty of P53 has former
or current location (is former or current location of). The latter is a container for location information in the absence of
knowledge about time of validity and related events.

An interesting aspect of the model is the P58 has section definition (defines section) property between E46 Section Definition and
E18 Physical Thing (and the corresponding shortcut from E53 Place to E19 Physical Object). This allows an instance of E53 Place
to be defined as a section of an instance of E19 Physical Object. For example, we may know that Nelson fell at a particular spot
on the deck of H.M.S. Victory, without knowing the exact position of the vessel in geospatial terms at the time of the fatal
shooting of Nelson. Similarly, a signature or inscription can be located “in the lower right corner of” a painting, regardless of
where the painting is hanging.

Classes describe qualities of single individuals, have a time-less intension
(e.g., meaning) and a time-dependent extension (e.g., individuals, the
instances of the class).

For each CRM class, we introduce in our FO language a unary predicate
symbol, given by the class identifier.

I E53 Place ⇒ E53
IsA links are conditionals:

I (∀x) [E53(x) ⊃ E1(x)]
For all individuals x , if x is a
E53, then x is a E1.

Definition of the CIDOC Conceptual Reference Model xviii

Examples

E1 CRM Entity

E19 Physical Object

E18 Physical Thing

E77 persistent Item

E39 Actor

E51 Contact Point

E53 Place

E44 Place Appellation

E46 Section Definition

E48 Place Name

0,n

0,n

P76 has contact point
(provides access to)

E45 Address

E47 Spatial Coordinates

0,n

0,n

P87 is iden tified by
(iden tifies)

1,1

E70 Thing

0,n

0,1

0,n

0,n

0,1

P59 has section
(is located on or wi thin

P55 has curre nt location
(curr ently holds)

0,n

1,n

P53 has former or current location
(is form er or current location of)

P88 consists of
(forms part of)

0,n

E41 Appellation

P58 has section definition
(defines section)

0,n

fig. 2 reasoning about spatial information

The diagram above shows a partial view of the CRM, representing reasoning about spatial information. Five of the main hierarchy
branches are included in this view: E39 Actor, E51 Contact Point, E41 Appellation, E53 Place and E70 Thing. All classes are
shown as blue-white rectangles. Properties are shown as single arrows. In some cases the order of priority for property names has
been reversed in order to facilitate reading the diagram from left to right. Double arrows indicate IsA relations between classes
and their subclasses or between properties and their subproperties. 'Shortcuts' are indicated with light grey rectangles and their
names are written in italics, such as the P59 has section (is located on or within) between E53 Place and E18 Physical Thing,
which is a shortcut of the path through E46 Section Definition. .

As can be seen, an instance of E53 Place is identified by an instance of E44 Place Appellation, which may be an instance of E45
Address, E47 Spatial Coordinates, E48 Place Name, or E46 Section Definition such as ‘basement’, ‘prow’, or ‘lower left-hand
corner.’ An instance of E53 Place may consist of or form part of another instance of E53 Place, thereby allowing a hierarchy of
geometric ‘containers’ to be constructed.

An instance of E45 Address can be considered both as an E44 Place Appellation–a way of referring to an E53 Place–and as an
E51 Contact Point for an E39 Actor. An E39 Actor may have any number of instances of E51 Contact Point. E18 Physical Thing
is found on locations as a consequence of being created there or being moved there. Therefore the properties P53 has former or
current location (is former or current location of) (and P55 has current location (currently holds) are regarded as shortcuts of the
fully articulated paths through the respective events. P55 has current location (currently holds) is a subproperty of P53 has former
or current location (is former or current location of). The latter is a container for location information in the absence of
knowledge about time of validity and related events.

An interesting aspect of the model is the P58 has section definition (defines section) property between E46 Section Definition and
E18 Physical Thing (and the corresponding shortcut from E53 Place to E19 Physical Object). This allows an instance of E53 Place
to be defined as a section of an instance of E19 Physical Object. For example, we may know that Nelson fell at a particular spot
on the deck of H.M.S. Victory, without knowing the exact position of the vessel in geospatial terms at the time of the fatal
shooting of Nelson. Similarly, a signature or inscription can be located “in the lower right corner of” a painting, regardless of
where the painting is hanging.

Disjointness constraints are negative conditionals:

Definition of the CIDOC Conceptual Reference Model xvi

x E2 Temporal Entity is disjoint from E77 Persistent Item. Instances of the class E2 Temporal Entity are perdurants,
whereas instances of the class E77 Persistent Item are endurants. Even though instances of E77 Persistent Item have a
limited existence in time, they are fundamentally different in nature from instances of E2 Temporal Entity, because they
preserve their identity between events. Declaring endurants and perdurants as disjoint classes is consistent with the
distinctions made in data structures that fall within the CRM’s practical scope.

x E18 Physical Thing is disjoint from E28 Conceptual Object. The distinction is between material and immaterial items,
the latter being exclusively man-made. Instances of E18 Physical Thing and E28 Conceptual Object differ in many
fundamental ways; for example, the production of instances of E18 Physical Thing implies the incorporation of physical
material, whereas the production of instances of E28 Conceptual Object does not. Similarly, instances of E18 Physical
Thing cease to exist when destroyed, whereas an instance of E28 Conceptual Object perishes when it is forgotten or its last
physical carrier is destroyed.

About Types
Virtually all structured descriptions of museum objects begin with a unique object identifier and information about the "type" of
the object, often in a set of fields with names like "Classification", "Category", "Object Type", "Object Name", etc. All these
fields are used for terms that declare that the object belongs to a particular category of items. In the CRM the class E55 Type
comprises such terms from thesauri and controlled vocabularies used to characterize and classify instances of CRM classes.
Instances of E55 Type represent concepts (universals) in contrast to instances of E41 Appellation which are used to name
instances of CRM classes.

E55 Type is the CRM’s interface to domain specific ontologies and thesauri. These can be represented in the CRM as subclasses
of E55 Type, forming hierarchies of terms, i.e. instances of E55 Type linked via P127 has broader term (has narrower term).
Such hierarchies may be extended with additional properties.

For this purpose the CRM provides two basic properties that describe classification with terminology, corresponding to what is the
current practice in the majority of information systems. The class E1 CRM Entity is the domain of the property P2 has type (is
type of), which has the range E55 Type. Consequently, every class in the CRM, with the exception of E59 Primitive Value,
inherits the property P2 has type (is type of). This provides a general mechanism for simulating a specialization of the
classification of CRM instances to any level of detail, by linking to external vocabulary sources, thesauri, classification schema or
ontologies.

Analogous to the function of the P2 has type (is type of) property, some properties in the CRM are associated with an additional
property. These are numbered in the CRM documentation with a ‘.1’ extension. The range of these properties of properties always
falls under E55 Type. Their purpose is to simulate a specialization of their parent property through the use of property subtypes
declared as instances of E55 Type. They do not appear in the property hierarchy list but are included as part of the property
declarations and referred to in the class declarations. For example, P62.1 mode of depiction: E55 Type is associated with E24
Physical Man-made Thing. P62 depicts (is depicted by): E1 CRM Entity.

The class E55 Type also serves as the range of properties that relate to categorical knowledge commonly found in cultural
documentation. For example, the property P125 used object of type (was type of object used in) enables the CRM to express
statements such as “this casting was produced using a mould”, meaning that there has been an unknown or unmentioned object, a
mould, that was actually used. This enables the specific instance of the casting to be associated with the entire type of
manufacturing devices known as moulds. Further, the objects of type “mould” would be related via P2 has type (is type of) to this
term. This indirect relationship may actually help in detecting the unknown object in an integrated environment. On the other side,
some casting may refer directly to a known mould via P16 used specific object (was used for). So a statistical question to how
many objects in a certain collection are made with moulds could be answered correctly (following both paths through P16 used
specific object (was used for) - P2 has type (is type of) and P125 used object of type (was type of object used in). This consistent
treatment of categorical knowledge enhances the CRM’s ability to integrate cultural knowledge.

In addition to being an interface to external thesauri and classification systems E55 Type is an ordinary class in the CRM and a
subclass of E28 Conceptual Object. E55 Type and its subclasses inherit all properties from this superclass. Thus together with the
CRM class E83 Type Creation the rigorous scholarly or scientific process that ensures a type is exhaustively described and
appropriately named can be modelled inside the CRM. In some cases, particularly in archaeology and the life sciences, E83 Type
Creation requires the identification of an exemplary specimen and the publication of the type definition in an appropriate scholarly
forum. This is very central to research in the life sciences, where a type would be referred to as a “taxon,” the type description as a
“protologue,” and the exemplary specimens as “original element” or “holotype”.

Finally, types, that is, instances of E55 Type and its subclasses, are used to characterize the instances of a CRM class and hence
refine the meaning of the class. A type ‘artist’ can be used to characterize persons through P2 has type (is type of). On the other
hand, in an art history application of the CRM it can be adequate to extend the CRM class E21 Person with a subclass E21.xx
Artist. What is the difference of the type ‘artist’ and the class Artist? From an everyday conceptual point of view there is no
difference. Both denote the concept ‘artist’ and identify the same set of persons. Thus in this setting a type could be seen as a class
and the class of types may be seen as a metaclass. Since current systems do not provide an adequate control of user defined

(∀x)[E2(x) ⊃ ¬E77(x)]

Properties

Properties are binary predicate symbols

Definition of the CIDOC Conceptual Reference Model xviii

Examples

E1 CRM Entity

E19 Physical Object

E18 Physical Thing

E77 persistent Item

E39 Actor

E51 Contact Point

E53 Place

E44 Place Appellation

E46 Section Definition

E48 Place Name

0,n

0,n

P76 has contact point
(provides access to)

E45 Address

E47 Spatial Coordinates

0,n

0,n

P87 is iden tified by
(iden tifies)

1,1

E70 Thing

0,n

0,1

0,n

0,n

0,1

P59 has section
(is located on or wi thin

P55 has curre nt location
(curr ently holds)

0,n

1,n

P53 has former or current location
(is form er or current location of)

P88 consists of
(forms part of)

0,n

E41 Appellation

P58 has section definition
(defines section)

0,n

fig. 2 reasoning about spatial information

The diagram above shows a partial view of the CRM, representing reasoning about spatial information. Five of the main hierarchy
branches are included in this view: E39 Actor, E51 Contact Point, E41 Appellation, E53 Place and E70 Thing. All classes are
shown as blue-white rectangles. Properties are shown as single arrows. In some cases the order of priority for property names has
been reversed in order to facilitate reading the diagram from left to right. Double arrows indicate IsA relations between classes
and their subclasses or between properties and their subproperties. 'Shortcuts' are indicated with light grey rectangles and their
names are written in italics, such as the P59 has section (is located on or within) between E53 Place and E18 Physical Thing,
which is a shortcut of the path through E46 Section Definition. .

As can be seen, an instance of E53 Place is identified by an instance of E44 Place Appellation, which may be an instance of E45
Address, E47 Spatial Coordinates, E48 Place Name, or E46 Section Definition such as ‘basement’, ‘prow’, or ‘lower left-hand
corner.’ An instance of E53 Place may consist of or form part of another instance of E53 Place, thereby allowing a hierarchy of
geometric ‘containers’ to be constructed.

An instance of E45 Address can be considered both as an E44 Place Appellation–a way of referring to an E53 Place–and as an
E51 Contact Point for an E39 Actor. An E39 Actor may have any number of instances of E51 Contact Point. E18 Physical Thing
is found on locations as a consequence of being created there or being moved there. Therefore the properties P53 has former or
current location (is former or current location of) (and P55 has current location (currently holds) are regarded as shortcuts of the
fully articulated paths through the respective events. P55 has current location (currently holds) is a subproperty of P53 has former
or current location (is former or current location of). The latter is a container for location information in the absence of
knowledge about time of validity and related events.

An interesting aspect of the model is the P58 has section definition (defines section) property between E46 Section Definition and
E18 Physical Thing (and the corresponding shortcut from E53 Place to E19 Physical Object). This allows an instance of E53 Place
to be defined as a section of an instance of E19 Physical Object. For example, we may know that Nelson fell at a particular spot
on the deck of H.M.S. Victory, without knowing the exact position of the vessel in geospatial terms at the time of the fatal
shooting of Nelson. Similarly, a signature or inscription can be located “in the lower right corner of” a painting, regardless of
where the painting is hanging.

Properties describe qualities of pairs individuals (Carlo likes Brunello),
have a time-less intension (e.g., meaning) and a time-dependent
extension (e.g., pairs of individuals).

For each CRM property, we introduce in our FO language a binary
predicate symbol, given by the property identifier.

I P88 consists of ⇒ P88

Property IsA links are also expressed as conditionals:

Definition of the CIDOC Conceptual Reference Model xxiv

CIDOC CRM Property Hierarchy:

Proper
ty id

Property Name Entity – Domain Entity - Range

P1 is identified by (identifies) E1 CRM Entity E41 Appellation
P48 - has preferred identifier (is preferred identifier of) E1 CRM Entity E42 Identifier
P78 - is identified by (identifies) E52 Time-Span E49 Time Appellation
P87 - is identified by (identifies) E53 Place E44 Place Appellation
P102 - has title (is title of) E71 Man-Made Thing E35 Title
P131 - is identified by (identifies) E39 Actor E82 Actor Appellation
P149 - is identified by (identifies) E28 Conceptual Object E75 Conceptual Object Appellation
P2 has type (is type of) E1 CRM Entity E55 Type
P137 - exemplifies (is exemplified by) E1 CRM Entity E55 Type
P3 has note E1 CRM Entity E62 String
P79 - beginning is qualified by E52 Time-Span E62 String
P80 - end is qualified by E52 Time-Span E62 String
P4 has time-span (is time-span of) E2 Temporal Entity E52 Time-Span
P5 consists of (forms part of) E3 Condition State E3 Condition State
P7 took place at (witnessed) E4 Period E53 Place
P26 - moved to (was destination of) E9 Move E53 Place
P27 - moved from (was origin of) E9 Move E53 Place
P8 took place on or within (witnessed) E4 Period E18 Physical Thing
P9 consists of (forms part of) E4 Period E4 Period
P10 falls within (contains) E4 Period E4 Period
P12 occurred in the presence of (was present at) E5 Event E77 Persistent Item
P111 - added (was added by) E79 Part Addition E18 Physical Thing
P113 - removed (was removed by) E80 Part Removal E18 Physical Thing
P11 - had participant (participated in) E5 Event E39 Actor
P14 - - carried out by (performed) E7 Activity E39 Actor
P22 - - - transferred title to (acquired title through) E8 Acquisition E39 Actor
P23 - - - transferred title from (surrendered title through) E8 Acquisition E39 Actor
P28 - - - custody surrendered by (surrendered custody through) E10 Transfer of Custody E39 Actor
P29 - - - custody received by (received custody through) E10 Transfer of Custody E39 Actor
P96 - - by mother (gave birth) E67 Birth E21 Person
P99 - - dissolved (was dissolved by) E68 Dissolution E74 Group
P143 - - joined (was joined by) E85 Joining E39 Actor
P144 - - joined with (gained member by) E85 Joining E74 Group
P145 - - separated (left by) E86 Leaving E39 Actor
P146 - - separated from (lost member by) E86 Leaving E74 Group
P151 - - was formed from (participated in) E66 Formation E74 Group
P16 - used specific object (was used for) E7 Activity E70 Thing
P33 - - used specific technique (was used by) E7 Activity E29 Design or Procedure
P111 - - added (was added by) E79 Part Addition E18 Physical Thing
P142 - - used constituent (was used in) E15 Identifier Assignment E90 Symbolic Object
P25 - moved (moved by) E9 Move E19 Physical Object
P31 - has modified (was modified by) E11 Modification E24 Physical Man-Made Thing
P108 - - has produced (was produced by) E12 Production E24 Physical Man-Made Thing
P110 - - augmented (was augmented by) E79 Part Addition E24 Physical Man-Made Thing
P112 - - diminished (was diminished by) E80 Part Removal E24 Physical Man-Made Thing
P92 - brought into existence (was brought into existence by) E63 Beginning of Existence E77 Persistent Item
P94 - - has created (was created by) E65 Creation E28 Conceptual Object
P135 - - - created type (was created by) E83 Type Creation E55 Type
P95 - - has formed (was formed by) E66 Formation E74 Group
P98 - - brought into life (was born) E67 Birth E21 Person
P108 - - has produced (was produced by) E12 Production E24 Physical Man-Made Thing
P123 - - resulted in (resulted from) E81 Transformation E77 Persistent Item
P93 - took out of existence (was taken out of existence by) E64 End of Existence E77 Persistent Item
P13 - - destroyed (was destroyed by) E6 Destruction E18 Physical Thing
P99 - - dissolved (was dissolved by) E68 Dissolution E74 Group
P100 - - was death of (died in) E69 Death E21 Person
P124 - - transformed (was transformed by) E81 Transformation E77 Persistent Item
P142 - - used constituent (was used in) E15 Identifier Assignment E90 Symbolic Object
P15 was influenced by (influenced) E7 Activity E1 CRM Entity
P16 - used specific object (was used for) E7 Activity E70 Thing
P33 - - used specific technique (was used by) E11 Modification E29 Design or Procedure
P111 - - added (was added by) E79 Part Addition E18 Physical Thing
P142 - - used constituent (was used in) E15 Identifier Assignment E90 Symbolic Object
P17 - was motivated by (motivated) E7 Activity E1 CRM Entity
P134 - continued (was continued by) E7 Activity E7 Activity
P136 - was based on (supported type creation) E83 Type Creation E1 CRM Entity
P19 was intended use of (was made for) E7 Activity E71 Man-Made Thing
P20 had specific purpose (was purpose of) E7 Activity E5 Event
P21 had general purpose (was purpose of) E7 Activity E55 Type
P24 transferred title of (changed ownership through) E8 Acquisition E18 Physical Thing
P30 transferred custody of (custody transferred through) E10 Transfer of Custody E18 Physical Thing
P43 has dimension (is dimension of) E70 Thing E54 Dimension
P44 has condition (is condition of) E18 Physical Thing E3 Condition State
P45 consists of (is incorporated in) E18 Physical Thing E57 Material

(∀xy)[P111(x , y) ⊃ P12(x , y)]

Properties also have domain and range
restrictions

Definition of the CIDOC Conceptual Reference Model xviii

Examples

E1 CRM Entity

E19 Physical Object

E18 Physical Thing

E77 persistent Item

E39 Actor

E51 Contact Point

E53 Place

E44 Place Appellation

E46 Section Definition

E48 Place Name

0,n

0,n

P76 has contact point
(provides access to)

E45 Address

E47 Spatial Coordinates

0,n

0,n

P87 is iden tified by
(iden tifies)

1,1

E70 Thing

0,n

0,1

0,n

0,n

0,1

P59 has section
(is located on or wi thin

P55 has curre nt location
(curr ently holds)

0,n

1,n

P53 has former or current location
(is form er or current location of)

P88 consists of
(forms part of)

0,n

E41 Appellation

P58 has section definition
(defines section)

0,n

fig. 2 reasoning about spatial information

The diagram above shows a partial view of the CRM, representing reasoning about spatial information. Five of the main hierarchy
branches are included in this view: E39 Actor, E51 Contact Point, E41 Appellation, E53 Place and E70 Thing. All classes are
shown as blue-white rectangles. Properties are shown as single arrows. In some cases the order of priority for property names has
been reversed in order to facilitate reading the diagram from left to right. Double arrows indicate IsA relations between classes
and their subclasses or between properties and their subproperties. 'Shortcuts' are indicated with light grey rectangles and their
names are written in italics, such as the P59 has section (is located on or within) between E53 Place and E18 Physical Thing,
which is a shortcut of the path through E46 Section Definition. .

As can be seen, an instance of E53 Place is identified by an instance of E44 Place Appellation, which may be an instance of E45
Address, E47 Spatial Coordinates, E48 Place Name, or E46 Section Definition such as ‘basement’, ‘prow’, or ‘lower left-hand
corner.’ An instance of E53 Place may consist of or form part of another instance of E53 Place, thereby allowing a hierarchy of
geometric ‘containers’ to be constructed.

An instance of E45 Address can be considered both as an E44 Place Appellation–a way of referring to an E53 Place–and as an
E51 Contact Point for an E39 Actor. An E39 Actor may have any number of instances of E51 Contact Point. E18 Physical Thing
is found on locations as a consequence of being created there or being moved there. Therefore the properties P53 has former or
current location (is former or current location of) (and P55 has current location (currently holds) are regarded as shortcuts of the
fully articulated paths through the respective events. P55 has current location (currently holds) is a subproperty of P53 has former
or current location (is former or current location of). The latter is a container for location information in the absence of
knowledge about time of validity and related events.

An interesting aspect of the model is the P58 has section definition (defines section) property between E46 Section Definition and
E18 Physical Thing (and the corresponding shortcut from E53 Place to E19 Physical Object). This allows an instance of E53 Place
to be defined as a section of an instance of E19 Physical Object. For example, we may know that Nelson fell at a particular spot
on the deck of H.M.S. Victory, without knowing the exact position of the vessel in geospatial terms at the time of the fatal
shooting of Nelson. Similarly, a signature or inscription can be located “in the lower right corner of” a painting, regardless of
where the painting is hanging.

These restrictions naturally translates as conditional axioms as well:

CRM Specification First-order logic
P has Domain C (∀xy)[P(x , y) ⊃ C(x)]
P has Range D (∀xy)[P(x , y) ⊃ D(y)]

e.g.,

I (∀xy)[P88(x , y) ⊃ E53(x)]
I (∀xy)[P88(x , y) ⊃ E53(y)]

Properties may be:

I symmetric: P114 is equal in time to (of time periods)
I transitive: P86 falls within (of time periods)

Conditionals are also good for these axioms, as we learn at the lyceum
(let’s drop universal quantifiers to make our formulas lighter):

I symmetric: P114(x , y) ⊃ P114(y , x)
I transitive: P86(x , y) ∧ P86(y , z) ⊃ P86(x , z)

So far we have covered the basics.

Meta-Properties

A meta-property is a property whose domain is a property.

Meta-properties are modelled as 3-place predicate symbols:

I the first two places are given to the terms in the domain property,
I the last place is used for the type.

CRM Specification Translation into first-order logic
P has Meta-Property P.n: C P.n(x , y , z) ⊃ [P(x , y) ∧ C(z)]
P has Asymmetric Meta-Prop. P.n: C P.n(x , y , z) ⊃ [P(x , y) ∧ ¬P.n(y , x , z) ∧ C(z)]

The corresponding axiom includes the assertion of the domain property in
the consequent, thus making it possible to omit it whenever a typing
statment is present.

Shortcuts

Property Type Shortcut (from the CRM Specifications)

P2 has type
(is type of)

strong From E1 CRM Entity through P41 classified (was clas-
sified), E17 Type Assignment, P42 assigned (was as-
signed by) to E55 Type

P43 has dimension
(is dimension of)

weak From E70 Thing through P39 measured (was measured
by), E16 Measurement, P40 observed dimension (was
observed in) to E54 Dimension

P53 has former or
current location

inverse
weak

From E18 Physical Thing through P161 has spatial pro-
jection, E53 Place, P121 overlaps with to E53 Place

CRM Specification Translation into first-order logic
Weak Shortcut P1 . . . Pn [P1(x , z1) ∧ P2(z1, z2) ∧ . . . ∧ Pn(zn, y)] ⊃ P(x , y)
Weak Inverse Shortcut P1 . . . Pn P(x , y) ⊃ ∃z1 . . . zn[P1(x , z1) ∧ . . . ∧ Pn(zn, y)]
Strong Shortcut P1 . . . Pn P(x , y) ≡ ∃z1 . . . zn[P1(x , z1) ∧ . . . ∧ Pn(zn, y)]

Weak shortcut:

[P39(x , y) ∧ P40(y , z)] ⊃ P43(x , z)

Note that from domain and range axioms it follows that x , y and z are
instances of E70, E16 and E54, respectively.

Likewise, inverse weak shortcut:

P53(x , y) ⊃ (∃z)[P161(x , z) ∧ P121(z , y)]

Property quantification

The definition of quantifiers is given in terms of two features:

I total property and
I functional property

that can be applied to a property or to its inverse. Therefore a property
or its inverse fall exactly into one of the following cases:

1. total and not functional, i.e., defined on every element of its domain
and can take up more than one value;

2. functional and not total, i.e., at most one value is provided for any
element of its domain;

3. the property is neither total, i.e., some domain elements can miss it,
nor functional, i.e., can take up more than one value for any element
of its domain;

4. both total and functional, i.e.all domain element must have one
value for it, and no more than one.

Translation:

I P is functional: [P(x , y) ∧ P(x , y ′)] ⊃ (y = y ′)
I P is total (on domain A): A(x) ⊃ ∃yP(x , y)
I the inverse of P is functional: [P(x , y) ∧ P(x ′, y)] ⊃ (x = x ′)
I the inverse of P is total (having range A): A(x) ⊃ ∃yP(y , x)

The complete translation of each quantifier can be obtained by
conjoining the translation of the corresponding features. For instance:

I many to many (0,n:0,n): P and its inverse are neither total nor
functional: no axiom

I one to one (1,1:1,1): P and its inverse are total and functional:
A(x) ⊃ ∃yP(x , y)
[P(x , y) ∧ P(x , y ′)] ⊃ (y = y ′)
B(x) ⊃ ∃yP(y , x)
[P(x , y) ∧ P(x ′, y)] ⊃ (x = x ′)

Co-reference axioms

The well-known axioms for co-reference (or equality) are:

RefEq x = x
SymEq (x = y) ⊃ (y = x)
TransEq [(x = y) ∧ (y = z)] ⊃ (x = z)
LLCl (x = y) ⊃ [C(x) ≡ C(y)]
LLPr [(x1 = y1) ∧ (x2 = y2)] ⊃ [P(~x) ≡ P(~y)]
LLMP [(x1 = y1) ∧ (x2 = y2) ∧ (x3 = y3)] ⊃ [P.n(~x) ≡ P.n(~y)]

The last three sentences capture Leibnitz Law for the three kinds of
predicate symbols in LC and, unlike the previous three sentences, are
axiom schemas.

A FO theory of the CRM
By applying the rules above to the specification of classes and properties,
we obtain a set of axioms that make up the C first-order theory.

Some pleasant consequences (based on standard logical notions):

I We can talk of the C language, as the set of predicate symbols that
occur in the axioms

I We can validate the CRM:
I we can prove that the C axioms are consistent (hopefully :-))
I as well as any other property we think it’s there

I We can defend the CRM: we can challenge the CRM’s detractors to
prove what they say

I We can compare the CRM, by formally testing whether a language is
equivalent to, or less/more powerful than the CRM

I We can check whether an implementation is sound and complete
with respect to the C

Nothing particularly surprising, but a firm ground to start building.

But all this can be done ONLY with paper and pencil. Can we do
something automatically? Let’s take a retrospective look to the axiom
schemes that we have used for capturing the CRM:

SubC A(x) ⊃ B(x)
Dom P(x , y) ⊃ DP(x)
Ran P(x , y) ⊃ RP(y)

SubP P(x , y) ⊃ Q(x , y)
SymP P(x , y) ⊃ P(y , x)

TransP [P(x , y) ∧ P(y , z)] ⊃ P(x , z)
MetaP P.n(x , y , z) ⊃ [P(x , y) ∧ E55(z)]
WSCut [P1(x , z1) ∧ . . . ∧ Pn(zn−1, y)] ⊃ P(x , y)
FuncP [P(x , y) ∧ P(x , y ′)] ⊃ (y = y ′)
FuncIP [P(x , y) ∧ P(x ′, y)] ⊃ (x = x ′)
DisC A(x) ⊃ ¬B(x)

AMetaP P.n(x , y , z) ⊃ ¬P.n(y , x , z)
WICut P(x , y) ⊃ (∃z1 . . . zn−1)[[P1(x , z1) ∧ . . . ∧ Pn(zn−1, y)]
TotP A(x) ⊃ (∃y)P(x , y)
TotIP B(x) ⊃ (∃y)P(y , x)
RefEq x = x
SymEq (x = y) ⊃ (y = x)

TransEq [(x = y) ∧ (y = z)] ⊃ (x = z)
LLCl (x = y) ⊃ [C(x) ≡ C(y)]
LLPr [(x1 = y1) ∧ (x2 = y2)] ⊃ [P(~x) ≡ P(~y)]

LLMP [(x1 = y1) ∧ (x2 = y2) ∧ (x3 = y3)] ⊃ [P.n(~x) ≡ P.n(~y)]

The structure of the C axioms is very close to that of definite program
clauses (DPCs):

∀x1 . . . xn(B1 ∧ . . . ∧ Bk) ⊃ A

where each of the A,B1, . . . ,Bk is an atom.

This closeness suggests that a datalog implementation of C may be
possible, as long as we can deal with:

I the negation in the axioms schemas in the middle group; and
I the existential quantication in the axioms schemas in the bottom

group.

Removing negation

In order to remove negation, we introduce complementary classes and
complementary meta-properties and state the disjointness between a
class or a meta-property and its complement by using a special axiom
leading to a contradiction.

For each unary predicate symbol B in LC , we introduce a new unary
predicate symbol B and replace the DisC axiom schema A(x) ⊃ ¬B(x) by

A(x) ⊃ B(x)
B(x) ∧ B(x) ⊃ ⊥

where ⊥ is a contradiction; e.g., replace E2(x) ⊃ ¬E77(x) by:

E2(x) ⊃ E77(x)
E77(x) ∧ E77(x) ⊃ ⊥

We will see soon how ⊥ can be expressed.

Likewise, for each ternary predicate symbol P.n in LC , we introduce a
new ternary predicate symbol P.n and replace each AMetaP axiom
schema P.n(x , y , z) ⊃ ¬P.n(y , x , z) by:

P.n(x , y , z) ⊃ P.n(y , x , z)
P.n(x , y , z) ∧ P.n(x , y , z) ⊃ ⊥

A new set of axioms is obrained from TC , which we denote as T +
C .

T +
C is expressed in a new language that has no negation and a new set of

predicate symbols.

Intuitively, TC and T +
C are equivalent sets of axioms, since they state the

same constraints in different ways.

Formally, we have proved the equivalence.

Removing existential quantification
Skolemization: replacing each existential variable with a new constant,
i.e., a constant that does not occur in the KB.

This amounts to replace the axiom schemas of the third group by:

WICut [P(x , y) ∧ Si(h1, . . . , hn−1)] ⊃ [P1(x , h1) ∧ . . . ∧ Pn(hn−1, y)]
TotP [A(x) ∧ Ti(h)] ⊃ P(x , h)
TotIP [B(x) ∧ Vi(h)] ⊃ P(h, x)

where h, h1, . . . , hn−1 are new constants. Note that we use:

I one of the Si for each instantiation of the WICut schema and for
each strong shortcut

I one of the Ti for each instantiation of the TotP schema
I one of the Vi for each instantiation of the ToTIP schema.

Si , Ti and Vi play the role of generators of new tuples of constants.

By instanting these schemas in place of the replaced ones, we obtain a
new set of axioms that we denote as T ?

C .

Re-writing the co-reference axioms
RefEq is not a DPC, but it states a mathematical property of
co-reference that does not have any computational import, so we drop it.

SymEq and TransEq are clearly DPCs.

Each one of the three Leibnitz Laws can be restated into an equivalent
DPC. For LLCl:

LLCl1 [(x = y) ∧ C(x)] ⊃ C(y)
LLCl2 [(x = y) ∧ C(y)] ⊃ C(x)

Now, LLCl2 can be derived by SymEq and LLCl1, so it can be dispensed
with. We are therefore left with LLCl1. So we replace LLCl, LLPr and
LLMP by:

LLCl1 [(x = y) ∧ C(x)] ⊃ C(y)
LLPr1 [(x1 = y1) ∧ (x2 = y2) ∧ P(~x)] ⊃ P(~y)
LLMP1 [(x1 = y1) ∧ (x2 = y2) ∧ (x3 = y3) ∧ P.n(~x)] ⊃ P.n(~y)

Knowledge Bases

Our job would be finished here, because we have reached an
axiomatization of the CRM, and even one that can be computed with.

But why stop here?

After all, the CRM is created to be used in information systems.

So, we go on defining what a CRM knowledge base (KB) could be.

To begin with, a C KB is a set of sentences of the C language, including
the axioms.

But what kind of sentences do we expect to find in a CRM KB?

Besides the axioms, we expect KB to hold a description of the state of
the world, including the individuals in the domain of discourse.

But what kinds of individuals do we expect to find in a CRM KB?

Individuals and the CRM

The individuals in the domain of the CRM are:

I CRM-entities, which include appellations, and
I primitive values.

The CRM models these individuals as objects, identified by object
identifiers. We note that the CRM object identifiers have the following
features:

1. at any time, each identifier denotes only one object;
2. at any time, no two identifiers denote the same object;
3. each identifier denotes the same object throughout the whole KB

lifetime.

The logical counterpart of objects identifiers are constant symbols, which
satisfy the first feature above, because in any interepretation each of
them denotes one individual of the domain.

However, constant symbols:

I do not satisfy the second feature because nothing prevents two
constant symbols to co-refer in a specific model of the KB, that is
to denote the same individual;

I do not satisfy the third feature above either, because a KB may
have, at a given point during its lifetime, more than one model; and
nothing prevents the same constant symbol to denote different
individuals in two such models.

The problem posed by the second feature may be solved by introducing
the unique name axiom. The problem posed by the last feature, however,
remains.

Fortunately, a solution to this problem is presented by Levesque and
Lakemeyer, in the form of a convention that consists in introducing a
special category of symbols, called standard names and given by n1, n2,
. . . .

Standard names
Standard names behave exactly as the CRM identifiers, they are
one-to-one with the individuals in the domain of discourse in all possible
worlds.

They denote known individuals.

So, to represent that the city appelled as Pisa is known, we use a
standard name for it, say n7. And to state that the city called Pisa is in
fact the object that we know, we state co-reference:

Pisa = n7

On the contrary, just knowing Pisa= Vituperio_delle_genti does not
amount to have identified neither Pisa nor Vituperio_delle_genti.

We therefore use standard names to represent individuals in the domain
of discourse of the CRM.

ni = nj is a contradiction if i 6= j , so we can use it in place of ⊥.

Do we need any other type of individuals?

Constants

In the KB lifetime, the user may need to represent knowledge about
individuals whose identity is presently uncertain, in the sense that:

I it is not known whether these individuals have already been assigned
a standard name in the KB, or

I which standard name that would be.

This uncertainty may be resolved at a later time, either by discovering
the standard name that is used for these individuals, or by ascertaining
that no standard name has yet been assigned to them.

But it is required that the KB be able to hold knowledge about these
individuals until their identity is cleared and a standard name is available
for them.

FO logic offers constant symbols for naming individuals whose identity
may vary from interpretation to interpretation, therefore we also include
constant symbols in our language.

Now that we have a language also for individuals, we turn to the contents
of a CRM KBs.

First of all, a KB must include the axioms derived from the axiom
schemas that provide a representation of the meaning of the terms in the
LC vocabulary, e.g.:

E4(x) ⊃ E5(x)

Likewise, to capture that P4 has time-span is a functional property, we
instantiate the FuncP axiom scheme and obtain the C axiom:

P4(x , y) ∧ P4(x , y ′) ⊃ (y = y ′)

and so on. Without these axioms, collectively called ontological
knowledge, we cannot be sure that the KB exhibits the intended
behavior, for instance when querying it.

Second, a KB must contain sentences representing the state of the world
in the domain of discourse. These sentences form domain knowledge.

We envisage two kinds of domain knowledge

1. instantiation literals, representing the instantiation of classes and
properties, e.g.E81(n4), P1(Tom, “Tom′′) or P12(n15, bob)

2. co-reference literals, representing the referential relationships
between the constants and the standard names.

Co-reference literals come in two sorts:

I Positive co-reference literals:
I (n = a) asserting co-reference of a constant a and of a standard

name n; this is a strong piece of knowledge, allowing to identify the
individual named a.

I (a = b) asserting co-reference of two constants a and b; this atom
does not give an equally vivid knowledge as the previous one, yet it
allows to reduce the uncertainty in the KB by establishing
co-reference of two constants.

I Negative co-reference literals:
I (n 6= a) asserting that the individual named a is not identified by n;
I (a 6= b) asserting non-coreference between constants.

CRM KB defined

We can now define formally a CRM KB.

A C KB K as a pair K = (TC ,A), where:

1. TC , the TBox of K, includes the CRM axioms, obtained by
instantiating the axiom schemas introduced in the previous Section;

2. A, the ABox of K, is a finite, possibly empty set of instantiation and
co-reference literals, as discussed above.

And now . . .

I we can talk about a model of a KB, as any interpretation of the
language that satisfies all the axioms and the sentences in the KB

I we can talk about the consistency of a KB
I we can talk about reasoning in CRM because we have an inference

relation KB |= α

We can define formally the interaction with a KB, thereby separating
once for all the theory from its implementation:

I Tell(KB,s), where s is a sentence of our language
I we have a query language: the set of open formulas of the language

I e.g., E55(x) ∧ ∃y [P27(x , y) ∨ ¬P72(x , y)]
I Ask(KB,α), wehre α is a query
I we can use the inference relation to define the answer to a query

Let’s do it

The axioms in the set T ?
C are DPCs that can be expressed as datalog

rules forming a datalog program that we call PC .

PC is derived from rule schemas, in the same way the actual axioms of C
are derived from the first-order axioms schemas.

For instance, rule scheme SubC gives raise to the actual PC rule:

E4(x)← E5(x)

based on the C axiom (∀x)E5(x) ⊃ E4(x).

Likewise, rule scheme FuncP gives raise to the actual PC rule:

(y = y ′)← P4(x , y),P4(x , y ′)

We can now apply the program PC to the literals in the ABox and derive
all positive implicit literals in our KB.

For instance, if we have the literal E5(n) in our KB, we derive E4(n)
from it, by applying the rule

E4(x)← E5(x)

However, the users of a CRM KB are also interested in the implicit
negative knowledge, and it is not difficult to see that PC is not sufficient
to capture all such knowledge.

Let’s see what kind of inference we want to be able to make, returning
for a moment to first-order.

Suppose a KB includes ¬E4(n2) in its ABox. Together with rule
E4(x)← E5(x), this implies ¬E5(n2).

A sound and complete first-order inference system, such as one based on
resolution, would indeed derive ¬E5(n2).

But there is no way to obtain ¬E5(n2) (or its corresponding complement
E5(n2)) from PC . This is not surprising, since datalog aims at deriving
positive atoms that can be seen as elements of the interpretation of a
program.

We need to add more rules to those of PC in order to be able to derive
the implicit negated atoms by means of a datalog-based inference
system. In particular, we need to add the rule

E5(x)← E4(x)

to our TBox in order to be able to derive E5(n2).

However, we must be aware that not all negative knowledge is equally
desirable.

Let’s consider a scholar who is developing a KB K powered by a sound
and complete inference engine about whether or not Dante Alighieri
(standard name D) was present at the event (standard name b) of the
birth of Francesco Petrarca.

This piece of knowledge can be represented in the CRM by using
property P12 occurred in the presence of (was present at), linking an
event (instance of E5) to a persistent item (instance of E77) that was
present at the event.

Now, our scholar enters E21(D), E63(b) and ¬P12(b,D) (“Dante was
not present at the birth of Petrarca”) in the ABox.

Now the scholar checks K out and finds that it contains the three
assertions that he has inserted, but in addition it contains also the
assertion ¬P12(D, b) (“Dante did not occur in the presence of the birth
of Petrarca") of no meaning and no use.

Why?

Well . . .

I E21(D) implies E77(D) which implies ¬E2(D) by disjointness
I if D is not an event, then D is not in the domain of P12, hence it

cannot be true that P12(D, b) (no matter what b is) and therefore
its negation ¬P12(D, b) is true.

In fact, ¬P12(x , y) is true of all the x that are not events, or of all the y
that are not persistent items (as b in the last example), or both.

And the same applies to every other property.

In other words, if the ABox of a KB contains all negated atoms that
follow from the explicit knowledge, we may end up with a very large set
of true but totally irrelevant facts.

The semantics of negation makes this unpleasant fact unavoidable.

However, in our language we do not use negation directly, but we
simulate it through complements. This gives us the possibility of avoiding
undesired negative knowlede in our KB.

Relevance criterion for negative knowledge: we accept negated property
instantiation atoms P(i , j) or meta-property instantiation atoms
P.n(i , j , t) in the ABox of a KB only if i is an instance of the domain of
P and j is an instance of the range of P.

In other words, we consider relevant only negated atoms that involve
instances of the proper classes, therefore sentences like P12(D, b) would
generate an inconsistency if inserted into the KB.

For co-reference, the above criterion translates quite naturally as follows:
we accept negated co-reference instantiation atoms (i 6= j) in the ABox
of a KB only if i and j are instances of same class.

In order to implement this criterion, we introduce the following axiom
schemas:

RDom P(x , y) ⊃ DP(x)
RRan P(x , y) ⊃ RP(y)
RMetaP P.x(x , y , z) ⊃ P(x , y)
RCo (x 6= y) ∧ C(x) ⊃ C(y)

Happily, all these axioms are DPCs.

Notice that the same axioms would create undesired results, if expressed
through negation. For instance, RDom would be expressed as
¬P(x , y) ⊃ DP(x). On the other hand, Dom is P(x , y) ⊃ DP(x).
Considered together, these axioms imply (∀x)DP(x), a definitely
undesired outcome.

The datalog program PC is so obtained by introducing complementary
rule schemas.

I the complementary rule schemas corresponding to Dom, Ran and
the second MetaP would violate the relevance criterion stated
above, and threfore they are subsistuted by rule schemas encoding
RDom, RRan and RMetaP, respectively;

I WICut, TotP and TotIP do not have any corresponding rule schema,
because the body of each such rule would contain a negated
instantiation atom in which a new name h, h1, . . . , hn−1 occurs.
Such atoms can never be true, because new names are by definition
used only in positive instantiation atoms;

I ClUn, ClBin, ClTer and ClCo are tautologies used solely for
detecting inconsistencies and have therefore no corresponding
complementary rule schema.

Now we can compute all implicit literals.

Computing implicit literals

The ABox A of a KB can be viewed as an instance of the symbols in the
datalog program PC .

By applying PC to A, the minimal model A? of PC is obtained in an
efficient manner, that is using limited space and time resources.

A? includes the following types of atoms:

I The explicit instantiation atoms in A and those derived from A by
applying the rules in PC . For instance, assuming that E5(1) is an
instantion atom in A, the atom E4(1) is in A?.

I The explicit co-reference atoms in A and those derived by applying
the rules in PC . For instance, assuming that P4(1, 2) and P4(1, a)
are instantiaton atoms in A, due to rule for the functionality of P4,
the atom (2 = a) is in A?.

I Inconsistent atoms of the form (n1 = n2) with n1 different from n2.

Inconsistent atoms may result from two different types of derivation
paths:

I from the application of one of the rules having the sentence in their
heads, i.e., either rule ClEq or an instance of one of ClUn, ClBin,
ClTer. In this case an individual is instance of a predicate symbol
and of its complement, which is an obvious inconsistency;

I from the application of one of the rules having a co-reference atom
in their heads, i.e., either rules SymEq, TransEq or an instance of
one of FuncP, FuncIP. In this case two different standard names,
and possibly some constants, have been associated to the same
individual through a functional property, and this too is an obvious
inconsistency.

If an inconsistent atom is in A?, then the application of PC to the KB
reveals an inconsistency in the KB.

Skolemization preserves satisfiability, so the algorithm just outlined offers
a sound and complete method for the checking the consistency of any LC
KB as defined above.

Otherwise, the the application of PC transforms a KB K = (TC ,A), into
a new KB K? = (TC ,A?) that is an expansion of K, the closure of K,
including all implicit literals in K.

The closure of a KB is a natural candidate to compute the answers to
the queries stated against the KB.

Conclusions
We have:

1. a first-order expression of the CRM, for documentation and analysis
purposes

2. a definition of a CRM KB, able to handle elementary positive and
negative knowledge, whose consistency can be checked in an
efficient manner (with some adjustment on unknown individuals).

I If all this is sound, we have the beginning of a possible
implementation.

What’s missing:

I Querying: we can use all the power of datalog to write recursive
queries, which turn out very useful on graphs.

I But these are just the simple queries.
I We want the difficult ones :)

Thank you!

We want to see the hard ones . . .

